Документ подписан проступинитечной трабинауки и высшего образования Российской Федерации

Информация о владельце:

ФИО: Игнатенко Виталий Ива Федеральное государственное бюджетное образовательное учреждение

Должность: Проректор по образовательной деятельности и молвителюю образования

Дата подписания: 19.04.2023 083artблярный государственный университет им. Н.М. Федоровского»

Уникальный программный ключ:

(3ГУ)

a49ae343af5448d45d7e3e1e499659da8109ba78

УТВЕРЖДАЮ	
Проректор по	ОД
	Игнатенко В.И.

Материаловедение

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Технологические машины и оборудование

Учебный план 28.04.2022. бак.-очн. 15.03.02 MM-2021.plx

Направления подготовки: Технологические машины и оборудование

экзамены 4 курсовые работы 4

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость **53ET**

Часов по учебному плану 180 Виды контроля в семестрах:

в том числе:

80 аудиторные занятия

самостоятельная работа 73 часов на контроль 27

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	4 (2.2)		Итого	
Недель	1	6		
Вид занятий	УП	РΠ	УП	РП
Лекции	32	32	32	32
Лабораторные	16	16	16	16
Практические	32	32	32	32
В том числе инт.	12	12	12	12
Итого ауд.	80	80	80	80
Контактная работа	80	80	80	80
Сам. работа	73	56	73	56
Часы на контроль	27	27	27	27
Итого	180	163	180	163

Программу составил(и):	
доцент Сарафанова А.Я	
Согласовано:	
д.т.н. профессор Потапенков А.П.	

Рабочая программа дисциплины

Материаловедение

разработана в соответствии с ФГОС:

Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 15.03.02 ТЕХНОЛОГИЧЕСКИЕ МАШИНЫ И ОБОРУДОВАНИЕ (уровень бакалавриата) (приказ Минобрнауки России от 20.10.2015 г. № 1170)

Рабочая программа одобрена на заседании кафедры **Технологические машины и оборудование**

Протокол от 20.05.2022 г. № 8 Срок действия программы: 2022-2025 уч.г. Зав. кафедрой к.т.н., доцент С.С.Пилипенко

	Визирование РПД для исполнения в очередном учебном году
к.т.н., доцент С.С.Пилипенко	2023 г.
Рабочая программа пересмотре исполнения в 2023-2024 учебно Технологические машины и о	ом году на заседании кафедры
	зав. кафедрои к.т.н., доцент С.С.Пилипенко
	Визирование РПД для исполнения в очередном учебном году
к.т.н., доцент С.С.Пилипенко	2024 г.
Рабочая программа пересмотре исполнения в 2024-2025 учебно Технологические машины и о	ом году на заседании кафедры
	Протокол от 2024 г. № Зав. кафедрой к.т.н., доцент С.С.Пилипенко
	Визирование РПД для исполнения в очередном учебном году
к.т.н., доцент С.С.Пилипенко	2025 г.
Рабочая программа пересмотре исполнения в 2025-2026 учебно Технологические машины и о	ом году на заседании кафедры
	Протокол от
	Визирование РПД для исполнения в очередном учебном году
к.т.н., доцент С.С.Пилипенко	2026 г.
Рабочая программа пересмотре исполнения в 2026-2027 учебно Технологические машины и о	ом году на заседании кафедры
	Протокол от 2026 г. № Зав. кафедрой к.т.н., доцент С.С.Пилипенко

	1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ
1.1	Ознакомление с базовыми понятиями материаловедения и перспективными направлениями развития научной мысли в области материаловедения.
1.2	Задачи учебной дисциплины «Материаловедение»:
1.3	Дать студентам знания и навыки, позволяющие применять методы стандартных испытаний по определению механических свойств и технологических показателей используемых материалов, а так же умение выбирать материалы для изготовления детелей при изготовлении технологических машин
1.4	

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП		
Ци	Цикл (раздел) ООП: Б1.Б		
2.1	Требования к предварительной подготовке обучающегося:		
2.1.1	Теория механизмов и машин		
2.1.2	Технология конструкционных материалов		
2.1.3	Физика		
2.1.4	Химия		
2.1.5	Введение в профиль		
	Теория механизмов и машин		
2.1.7	Технология конструкционных материалов		
2.1.8	Физика		
2.1.9	Химия		
2.1.10	Введение в профиль		
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:		
2.2.1	Методы современного проектирования металлургических машин		
2.2.2	Метрология, стандартизация и сертификация		
2.2.3	Основы проектирования		
2.2.4	Прикладные компьютерные программы		
2.2.5	Детали машин и основы конструирования		
2.2.6	Коррозия и защита металлов от нее		
2.2.7	Металлорежущее оборудование		
2.2.8	Металлургические машины и оборудование		
2.2.9	Спецглавы металловедения		
2.2.10	Технологические линии и комплексы металлургических производств		
2.2.11	Трение и износ машин		
2.2.12	Восстановление деталей металлургического оборудования		
2.2.13	Гидравлические и пневматические машины		
2.2.14	Надежность, эксплуатация и ремонт металлургических машин		
2.2.15	Основы автоматизированного конструирования металлургических машин		
2.2.16	Системы смазки металлургического оборудования		
2.2.17	Динамика и прочность металлургических машин		
2.2.18	Методы современного проектирования металлургических машин		
2.2.19	Метрология, стандартизация и сертификация		
2.2.20	Основы проектирования		
2.2.21	Прикладные компьютерные программы		
2.2.22	Детали машин и основы конструирования		
2.2.23	Коррозия и защита металлов от нее		
	Металлорежущее оборудование		
	Металлургические машины и оборудование		
2.2.26	Спецглавы металловедения		
2.2.27	Технологические линии и комплексы металлургических производств		
2.2.28	Трение и износ машин		
2.2.29	Восстановление деталей металлургического оборудования		

2.2.30	Гидравлические и пневматические машины
2.2.31	Надежность, эксплуатация и ремонт металлургических машин
2.2.32	Основы автоматизированного конструирования металлургических машин
2.2.33	Системы смазки металлургического оборудования
2.2.34	Динамика и прочность металлургических машин

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-4: пониманием сущности и значения информации в развитии современного общества, способностью получать и обрабатывать информацию из различных источников, готовностью интерпретировать, структурировать и оформлять информацию в доступном для других виде

оформальть информацию в доступном даль других виде		
Знать:		
Уровень 1	основные источники для получения и информации	
Уметь:		
Уровень 1	обрабатывать информацию полученную в общедоступных источниках	
Владеть:		
Уровень 1	навыками применения полученной информации в профессиональных интересах	

ПК-15: умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических мании.

технологических машин		
Знать:		
Уровень 1	назначение основных классы современных материалов, принципы маркировки, их свойства и области применения, атомно-кристаллическое строение металлов, их взаимосвязь со свойствами.	
Уровень 2	закономерности структурообразование, фазовые превращения в материалах, влияние структурных характеристик на свойства материалов, внутренних напряжениях; возникающих в деталях технологического оборудования	
Уровень 3	о влиянии микроструктуры на свойства материалов, взаимодействии материалов; анализировать процессы кристаллизации, особенности диффузионных механизмов, контролирующих кинетику развития кристаллизации и фазовых превращений в твердом состоянии, металлов и сплавов; теорию сплавов; теорию и практику термической и XTO	
Уметь:		
Уровень 1	формулировать требования к материалам, выполнение которых обеспечит безотказную работу деталей изделий и соединений в течение планируемого срока эксплуатации	
Уровень 2	использовать законы, естественных наук при прогнозировании напряженных состояний, деформаций металлических конструкция и деталей машин и механизмов в условиях производства эксплуатации	
Уровень 3	выбирать необходимые материалы, режимы термической и XTO, оценивать и прогнозировать поведение материалов, определить причины отказов оборудования из-за влияния на материалы деталей различных эксплуатационных факторов	
Владеть:		
Уровень 1	основными стандартными методами определения свойств материалов; основными сведениями о назначении металлов и сплавов	
Уровень 2	навыками использования принципов и методик испытаний, методами микроструктурного анализа	
Уровень 3	навыками работы с оборудованием: оптическими микроскопами, твердомерами, печами для термообработки; в полной мере владеть методами рационального выбора материалов для изготовления деталей машин и оборудования, назначения термической и ХТО	

ПК-16: ;	умением применять методы стандартных испытаний по определению физико-механических свойств и технологических показателей используемых материалов и готовых изделий
Знать:	
Уровень 1	основную техническую литературу и методические материалы, необходимые для осуществления обоснованного выбора современных материалов
Уровень 2	основные характеристики свойств материалов; виды технологической обработки материалов; современные методы определения механических свойств материалов
Уровень 3	физическую сущность явлений, происходящих в материалах их взаимосвязь со свойствами
Уметь:	
Уровень 1	выбирать материалы при выполнении ремонта изновенных деталей с учетом влияния внешних факторов и требований безопасной и эффективной эксплуатации с использованием современных материалов
Уровень 2	прогнозировать поведение материалов при воздействии на него различных факторов, в том числе работы в экстремальных условия

Уровень 3	формулировать требования к конструкционным и инструментальным материалам, грамотно выбирать современные методы исследования свойств материалов
Владеть:	
Уровень 1	практическими навыками выбора материалов с учетом механических, технологических, эксплуатационных свойств материалов
Уровень 2	методами определения механических, технологических и эксплуатационных свойств материалов; основными сведениями о значении и свойствах металлов и сплавов, технологии их производства
Уровень 3	современными стандартными методами испытания свойств основных и вспомогательных материалов

В результате освоения дисциплины обучающийся должен

3.1	Знать:
3.1.1	основные классы современных материалов их свойства и области применения, принципы выбора материалов;
3.1.2	закономерности структурообразования, фазовые превращения в материалах, влияние структурных характеристик на свойства материалов;
3.1.3	основные стандартные методы определения свойств материалов, принципы сравнительного анализа свойств материалов.
3.2	Уметь:
3.2.1	использовать на практике современные сведения о материалах, о влиянии структур на свойства материалов;
3.2.2	анализировать процессы кристаллизации, особенности диффузионных механизмов, контролирующих кинетику развития кристаллизации и фазовых превращений в твердом состоянии металлов и сплавов; использовать диаграммы состояния сплавов.
3.2.3	использовать законы естественных наук при при прогнозировании напряженных состояний, деформаций металлических конструкция и деталей машин и механизмов в условиях эксплуатации
3.3	Владеть:
3.3.1	овладение теоретическими и практическими методами выбора материалов с учетом их механических, технологических, эксплуатационных свойств

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание
	Раздел 1. Металловедение и термическая обработка металлов						
1.1	Классификация материалов. Атомно - кристаллическое строение металлов и сплавов. /Лек/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.11Л3.3 Э1 Э2 Э3	0	
1.2	Макроанализ /Лаб/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.4 Л2.11Л3.6 Э1 Э2 Э3	0	
1.3	Кристаллизация металлов. /Лек/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.11 Э1 Э2 Э3	1	
1.4	Механические свойства и конструктивная прочность металлов и сплавов /Лек/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.11 Э1 Э2 Э3	1	
1.5	Определение твердости металлов и сплавов по методу Бринелля /Лаб/	4	2	ПК-16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.8 Л2.11 Э1 Э2 Э3	0	

1.6	Определение твердости металлов и сплавов по методу Роквелла /Лаб/	4	2	ПК-16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.8 Л2.11 Э1 Э2 Э3	1	
1.7	Определение ударной вязкости конструкционных сталей. /Лаб/	4	2	ПК-16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.7 Л2.11 Э1 Э2 Э3	1	
1.8	Теория сплавов. Диаграммы состояния систем двойных сплавов. /Лек/	4	4	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.11 Э1 Э2 Э3	0	
1.9	Микроанализ /Лаб/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.8 Л2.11 Э1 Э2 Э3	1	
1.10	Железо и его сплавы.Диаграмма состояния системы железо- углерод /Лек/	4	2	ПК-15	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.8 Л2.9 Л2.11 Э1 Э2 Э3	0	
1.11	Классификация маркировка свойства и назначение чугунов. /Пр/	4	2	ПК-15	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.8 Л2.9 Л2.11Л3.3 Э1 Э2 Э3	0	
1.12	Изучение микроструктуры чугунов /Лаб/	4	2	ПК-15	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.11Л3.3 Э1 Э2 Э3	0	
1.13	Диаграмма состояния системы железо- углерод /Пр/	4	2	ПК-15	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.4 Л2.11 Э1 Э2 Э3	1	
1.14	Теория термической обработки /Лек/	4	4	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.5 Л2.6 Л2.11Л3.2 Л3.6 Э1 Э2 Э3	1	
1.15	Технология термической обработки /Лек/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.5 Л2.11Л3.2 Л3.6 Э1 Э2 Э3	1	
1.16	Конструкционные и инструментальные стали и сплавы /Лек/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.9 Л2.11 Э1 Э2 Э3	0	

1.17	Классификация маркировка свойства и назначение углеродистых сталей. /Пр/	4	4	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.9 Л2.11Л3.3 Э1 Э2 Э3	0	
1.18	Изучение микроструктуры конструкционных сталей. /Лаб/	4	4	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.11Л3.3 Э1 Э2 Э3	1	
1.19	Теория и технология термической обработки /Пр/	4	4	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.5 Л2.11Л3.2 Э1 Э2 Э3	1	
1.20	Теория и технология химико- термической обработки /Лек/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.5 Л2.11Л3.6 Э1 Э2 Э3	0	
1.21	Классификация маркировка свойства и легированных конструкционных сталей. /Пр/	4	4	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.9 Л2.11Л3.3 Э1 Э2 Э3	1	
1.22	Выбор материалов о термической обработки /Ср/	4	54	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.5 Л2.9 Л2.10 Л2.11 Л2.12Л3.1 Л3.5 Л3.7 Л3.8 Э1 Э2 Э3	0	
1.23	Классификация маркировка свойства и легированных инструментальных сталей и сплавов. /Пр/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.9 Л2.11Л3.5 Э1 Э2 Э3	1	
1.24	Теория и технология термической и химико-термической обработки /Пр/	4	4	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.11Л3.1 Л3.2 Л3.5 Л3.6 Э1 Э2 Э3	0	
1.25	Славы на основе алюминия и титана /Лек/	4	2	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.5 Л2.7 Л2.9 Л2.11Л3.7 Э1 Э2 Э3	0	
1.26	Теория и технология термической и химико-термической обработки /Пр/	4	4	ПК-15 ПК- 16	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.11Л3.1 Л3.2 Л3.5 Л3.6 Л3.7 Э1 Э2 Э3	0	

	1			I			
1.27	Классификация маркировка свойства и	4	2	ПК-15 ПК-	Л1.1	0	
	назначение цветных металлов и			16	Л1.2Л2.1		
	сплавов (сплавов на основе Al, Ti) /Пр/				Л2.2 Л2.3		
					Л2.9		
					Л2.11Л3.4		
					Л3.8		
					Э1 Э2 Э3		
1.28	Сплавы на основе меди и магния /Лек/	4	2	ПК-15 ПК-	Л1.1	0	
				16	Л1.2Л2.1		
					Л2.2 Л2.3		
					Л2.9		
					Л2.11Л3.4		
					Л3.8		
					Э1 Э2 Э3		
1.29	Классификация маркировка свойства и	4	2	ПК-15 ПК-	Л1.1	0	
	назначение цветных металлов и			16	Л1.2Л2.1		
	сплавов (сплавов на основе Си,				Л2.2 Л2.3		
	Mg) /Πp/				Л2.11Л3.4		
					Л3.8		
					Э1 Э2 Э3		
1.30	Электротехнические материалы /Пр/	4	2	ПК-15	Л1.1	0	
					Л1.2Л2.1		
					Л2.2 Л2.3		
					Л2.11Л3.4		
			_		91 92 93	_	
1.31	Антифрикционные сплавы /Лек/	4	2	ПК-15	Л1.1	0	
					Л1.2Л2.1		
					Л2.2 Л2.3		
					Л2.11Л3.4		
					Э1 Э2 Э3		
	Раздел 2. Неметаллические материалы						
2.1	Пластические, композиционные и	4	2	ПК-15 ПК-	Л1.1	0	
	резиновые материалы /Лек/			16	Л1.2Л2.1		
	_				Л2.2 Л2.3		
					Л2.11		
					Э1 Э2 Э3		
2.2	Клеящие, лакокрасочные,	4	2	ПК-15 ПК-	Л1.1	0	
	неорганические материалы /Лек/			16	Л1.2Л2.1		
					Л2.2 Л2.3		
					Л2.11		
					Э1 Э2 Э3		
2.3	Неметаллические материалы /Ср/	4	2	ПК-15 ПК-	Л1.1Л2.11	0	
				16	Э1 Э2		
	1	l	L	I		1	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Контрольные вопросы и задания

Вопросы для подготовки к экзамену.

- 1. Значение курса в инженерной подготовке. Роль материалов в современной технике. Классификация металлических и неметаллических материалов.
- 2. Атомно-кристаллическое строение металлов. Типы кристаллических решеток, их параметры. Кристаллографическое обозначение атомных плоскостей и напряжений.
- 3. Анизотропия, свойство металлов. Полиморфные и магнитные превращения в металлах.
- 4. Строение реальных кристаллов. Виды дефектов кристаллического строения, их характеристика и влияние на свойства металлов.
- 5. Кристаллизация жидких металлов. Термодинамические основы фазопревращений; факторы, влияющие на процесс кристаллизации чистых металлов.
- 6. Управление процессом гетерогенной кристаллизации. Модифицирование жидкого металла. Строение металлического слитка. Ликвация в сплавах.
- 7. Механические свойства, определяемые при статических испытаниях прочности, пластичности. Твердость и ее характеристика. Методы определения механического характера при статическом нагружении.
- 8. Механические свойства, определяемые при динамическом нагружении. Ударная вязкость, хладноломкость.
- 9. Свойства металла, определяющие долговечность изделия: износостойкость, сопротивление усталости, контактная вязкость.
- 10. Остаточные напряжения и их влияние на свойства металлов и сплавов. Пути повышения прочности металлов.

- 11. Напряжения и деформация: упругая и пластическая деформации. Деформация монокристаллов и поликристаллов, механизмы пластической деформации, сдвиг, двойникование.
- 12. Влияние пластических деформаций на структуру и свойства металлов (наклеп). Текстура деформации.
- 13. Влияние нагрева на свойства деформированного металла. Возврат и полигонизация. Первичная и собирательная рекристаллизация. Понятие о холодной и горячей деформации.
- 14. Основы теории сплавов. Характеристика понятий: сплав, система компонентов, фаза. Правило фаз.
- 15. Характеристика твердых растворов, химических соединений, промежуточных фаз и механических смесей.
- 16. Диаграммы состояния двойных сплавов и методы их построения. Диаграммы состояния. Системы с полной растворимостью компонентов в твердом состоянии. Правило фаз и правило отрезков.
- 17. Диаграмма состояния для сплавов, образующих при кристаллизации механические (эвтектические) смеси.
- 18. Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии.
- 19. Диаграмма состояния для сплавов, образующих химические соединения.
- 20. Диаграммы состояния сплавов, компоненты которых имеют полиморфные превращения. Эвтектоидное превращение в сплавах.
- 21. Связь между свойствами сплавов и типов диаграмм состояния.
- 22. Понятие о диаграммах состояния тройных сплавов.
- 23. Диаграммы состояния системы железо-цементит. Компоненты, фазы и структурные составляющие сталей и белых чугунов. Их характеристики, условия образования и свойства.
- 24. Диаграмма состояния системы железо-графит.
- 25. Влияние углерода и постоянных примесей на свойства стали. Классификация и маркировка углеродистых сталей по способу выплавки, качеству, назначению.
- 26. Влияние легирующих элементов на свойства сплавов железа, фазы, образуемые легирующими элементами твердые растворы, карбиды, интерметаллиды. Структурные классы легирующих сталей в условиях равновесия и охлаждения на воздухе.
- 27. Классификация, свойства и назначения чугунов. Влияние постоянных примесей на свойства чугунов.
- 28. Свойства, превращение стали при нагреве. Рост зерна аустенита. Влияние размера на механические и технологические свойства стали. Влияние легирующих элементов на рост зерна аустенита. Влияние размера на механические и технологические свойства стали. Влияние легирующих элементов на рост зерна аустенита.
- 29. Превращения переохлажденного аустенита. Диаграммы изометрического распада переохлажденного аустенита. Перлитное превращение, промежуточное превращение, мартенситное превращение: продукты распада аустенита и их свойства.
- 30. Превращение при нагреве закаленной стали. Влияние температуры и производительности нагрева на строение и свойства стали. Обратная и необратимая отпускная хрупкость. Строение стали.
- 31. Общая характеристика процессов термической обработки стали. Отжиг первого рода. Отжиг второго рода. Нормализация.
- 32. Закалка стали: выбор температуры закалки и закалочных сред. Закаливаемость стали и факторы, влияющие на нее. Влияние легирующих элементов на прокаливаемость стали. Способы закалки.
- 33. Отпуск стали. Виды и назначения отпуска. Технология проведения отпуска.
- 34. Термическая обработка стали: сущность, разновидность и характеристика ТМО.
- 35. Физические основы химико-термической обработки. Связь между диаграммой состояния и структурой диффузионного слоя.
- 36. Цементация. Механизм образования цементованного слоя и его свойства. Разновидности цементации: в твердом карбюризаторе, газовая цементация. Термическая обработка после цементации. Область применения.
- 37. Азотирование, фазы, образующиеся в азотированном слое. Разновидности азотирования: газовое азотирование, ионное азотирование, азотирование в жидких средах. Технология и область применения.
- 38. Цианирование стали. Виды цианирования. Технология, свойства, область применения.
- 39. Сущность диффузионной металлизации. Механизмы насыщения поверхностного слоя металлами. Разновидности диффузионной металлизации (хромирование, алитирование), области применения.
- 40. Поверхностная закалка, ее виды и области применения.
- 41. Методы поверхностного упрочнения: дробеструйная обработка, обработка роликами и т.д. Влияние поверхностного наклепа на предел выносливости.
- 42. Конструкционные стали, требования, предъявляемые к ним. Легированные конструкционные стали, их маркировка, автоматные, цементируемые, улучшаемые, рессорно-пружинные, шарикоподшипниковые, их термическая обработка.
- 43. Высокопрочные мартенситно-стареющие конструкционные стали, их термическая обработка. Износостойкие высокомарганцевые стали, их термическая обработка.
- 44. Высоколегированные конструкционные коррозионностойкие стали. Виды коррозии. Основные принципы создания нержавеющих сталей. Характеристика хромистых и хромоникелевых нержавеющих сталей.
- 45. Жаростойкие конструкционные стали. Газовая коррозия. Основные принципы создания жаростойких сталей.
- 46. Конструкционные жаростойкие стали. Жаропрочность, пути ее повышения. Стали перлитного мартенситного, мартенситно-ферритного и аустенитного классов (с карбидным и интерметаллидным уплотнением).
- 47. Инструментальные стали и сплавы. Классификация и маркировка инструментальных сталей. Стали нетеплостойкие, полутеплостойкие и теплостойкие для режущего инструмента, их термическая обработка. Стали для измерительного инструмента.
- 48. Стали и сплавы с особыми физическими свойствами. Магнитомягкие и магнитотвердые стали и сплавы. Стали и сплавы с высоким электросопротивлением. Сплавы с заданным температурным коэффициентом расширения.
- 49. Материалы, получаемые методом порошковой металлургии: твердые сплавы, конструкционные, порошковые материалы.

- Титан и его сплавы, их классификация. Термическая обработка алюминиевых сплавов. Область применения титановых сплавов.
- 51. Алюминий и его сплавы, их классификация. Термическая обработка алюминиевых сплавов. Область применения титановых сплавов.
- 52. Медь и ее сплавы. Латунь, бронзы, их свойства, состав, области применения.
- 53. Цинк, олово, свинец и их сплавы. Цинк и его сплавы. Олово и его сплавы. Припои на оловянной и свинцовой основе.
- 54. Антифрикционные сплавы на оловянистой, свинцовистой и цинковой основе.
- 55. Лакокрасочные, неорганические материалы, их классификация свойства и области применения.
- 56. Пластические материалы, их классификация свойства и области применения.
- 57. Композиционные материалы, их классификация свойства и области применения.

Вопросы для проведения контроля знаний по теме термическая и ХТО металлов и сплавов.

ВОПРОСЫ ДЛЯ КОНТРОЛЯ ЗНАНИЙ

- 1. Гомогенизационный отжиг сплавов (назначение, структурные изменения и изменения свойств, режимы и об-ласти применения).
- 2. Дорекристаллизационный отжиг металлов и сплавов (на¬значение, структурные изменения и изменения свойств, режимы и области применения).
- 3. Рекристаллизационный отжиг металлов и сплавов (назначение, структурные изменения и изменения свойств, режимы и области применения).
- 4. Остаточные напряжения в металлах и сплавах, их происхождение и влияние на свойства и поведение металлических изделий при обработке и эксплуатации.
- 5. Отжиг, уменьшающий напряжения в металлах и сплавах (назначение, структурные изменения, режимы и области применения).
- 6. Основы термодинамики фазовых превращений при охлаждении и нагреве. Критический зародыш и работа его образования.
- 7. Скорость образования центров кристаллизации, линейная скорость роста кристаллов и средняя скорость фазового превращения.
- 8. Гомогенное и гетерогенное зарождение фаз. Места предпочтительного образования зародышей при гетерогенном зарождении.
- 9. Кинетика фазовых превращений в твердом состоянии при нагреве. Диаграммы изотермических превращений и термокинетические диаграммы, способы их построения и значение.
- 10. Кинетика фазовых превращений в твердом состоянии при охлаждении. Диаграммы изотермических превращений и термокинетические диаграммы, способы их построения и значение.
- 11. Механизм и кинетика превращения ферритоцементитных смесей в аустенит. Влияние легирующих элементов на процесс образования аустенита при нагреве.
- 12. Закономерности роста аустенитного зерна при нагреве. Перегрев и пережог сталей.
- 13. Начальное, наследственное и действительное зерно аустенита. Методы оценки склонности сталей к росту зерна.
- 14. Механизм и кинетика перлитного превращения. Факторы, определяющие межпластиночное расстояние в перлите и размер перлитных колоний.
- 15. Механизм и кинетика перлитного превращения. Особенности перлитного превращения в доэвтектоидных и заэвтектоидных углеродистых сталях.
- 16. Механизм и кинетика перлитного превращения. Влияние легирующих элементов на перлитное превращение аустенита.
- 17. Полный и неполный отжиг сталей.
- 18. Изотермический и сфероидизирующий отжиг сталей.
- 19. Отжиг и нормализация сталей.
- 20. Патентирование сталей.
- 21. Разновидности отжига и нормализация чугунов (сущность, назначение и области применения).
- 22. Разновидности отжига цветных металлов и сплавов (сущность, назначение и области применения).
- 23. Закалка сплавов без полиморфного превращения (назначение, условия нагрева и охлаждения, влияние на свойства).
- 24. Особенности мартенситного превращения в углеродистых сталях.
- 25. Основы термодинамики мартенситного превращения.
- 26. Температура начала мартенситного превращения. Обратимость мартенситного превращения.
- 27. Механизм мартенситного превращения: кооперативный характер атомных перемещений, когерентный рост мартенситных кристаллов.
- 28. Механизм мартенситного превращения: кристаллогеометрия перестройки решетки аустенита в решетку мартенсита, дополнительная деформация при мартенситном превращении.
- 29. Микроструктура и субструктура сплавов, закаленных на мартенсит. Особенности строения пластинчатого мартенсита.
- 30. Микроструктура и субструктура сплавов, закаленных на мартенсит. Особенности строения реечного мартенсита.
- 31. Причины изменения механических свойств сплавов при закалке на мартенсит.
- 32. Кинетика и механизм бейнитного превращения. Строение и свойства верхнего и нижнего бейнитов.
- 33. Закаливаемость и прокаливаемость сталей.
- 34. Виды и разновидности процессов закалки изделий в машиностроении.
- 35. Полная и неполная закалка сталей.
- 36. Ступенчатая закалка и закалка сталей в двух средах.
- 37. Изотермическая закалка сталей.
- 38. Закалка сталей с обработкой холодом.

- 39. Поверхностная закалка сталей.
- 40. Изменение структуры закаленных углеродистых ста-лей при нагреве. Особенности микроструктуры и свойства отпущенного мартенсита, троостита и сорбита отпуска.
- 41. Влияние легирующих элементов на структурные изменения при отпуске сталей.
- 42. Разновидности отпуска сталей.
- 43. Особенности изменения микроструктуры и свойств легированных сталей при отпуске. Явление вторичного твердения легированных сталей.
- 44. Необратимая и обратимая отпускная хрупкость сталей (сущность, причины и меры предотвращения).
- 49. Причины изменения механических свойств сплавов при старении. Влияние продолжительности и температуры старения.
- 50. Естественное и искусственное старение. Разновидности искусственного старения.
- 51. Физико-химические основы процессов получения диффузионных слоев.
- 52. Элементарные стадии процессов диффузионного обогащения поверхностных слоев. Закономерности образования однофазных диффузионных зон.
- 53. Элементарные стадии процессов диффузионного обогащения поверхностных слоев. Закономерности образования многофазных диффузионных зон.
- 54. Цементация сталей в твердом карбюризаторе и жидкостная цементация (основы технологии, состав, строение и свойства науглероженных слоев).
- 55. Газовая цементация сталей (основы технологии, состав, строение и свойства науглероженных слоев).
- 56. Азотирование сталей (основы технологии и разновидности процесса, состав, строение и свойства азотированных слоев).
- 57. Цианирование сталей (основы технологии, состав, строение и свойства диффузионных слоев).
- 58. Нитроцементация сталей (основы технологии, состав, строение и свойства диффузионных слоев).
- 59. Борирование сталей (основы технологии, состав, строение и свойства борированных слоев).
- 60. Силицирование сталей (основы технологии, состав, строение и свойства силицированных слоев).
- 61. Алитирование сталей (основы технологии, состав, строение и свойства алитированных слоев).
- 62. Хромирование сталей (основы технологии, состав, строение и свойства хромированных слоев).
- 63. Цинкование сталей (основы технологии, состав, строение и свойства цинкованных слоев).
- 64. Общие задачи и место термической обработки в производственном процессе.
- 65. Способы нагрева изделий при термической обработке.
- 66. Рабочие среды для нагрева изделий при термической обработке.
- 67. Термическая обработка с использованием электронагрева.
- 68. Приемы и методы предотвращения окисления и обезуглероживания стальных изделий при термической обработке.
- 69. Классификация контролируемых атмосфер, применяемых при термической обработке, и требования, предъявляемые к контролируемым атмосферам.
- 70. Принципы получения, состав и назначение эндотермической, экзотермической, атмосферы из аммиака и азотной контролируемых атмосфер.
- 71. Охлаждающие среды, применяемые при термической обработке. Требования, предъявляемые к жидким охлаждающим средам.
- 72. Охлаждение изделий при термической обработке. Кривая идеального закалочного охлаждения.
- 73. Охлаждающие среды, не претерпевающие изменений агрегатного состояния во всем диапазоне температур охлаждения изделий.
- 74. Охлаждающие среды, претерпевающие изменения агрегатного состояния в связи с их кипением на горячей поверхности охлаждаемых изделий.
- 75. Виды автодеформации и классификация источников автодеформирования при термической обработке.
- 76. Автодеформации полуфабрикатов и изделий под действием внугренних напряжений и меры по их уменьшению.
- 77. Технологические способы малодеформационной закалки в приспособлениях и машинной закалки.
- 78. Термическая обработка с использованием лазерного нагрева, ее преимущества и недостатки.
- 79. Термическая обработка с использованием электроннолучевого нагрева, ее преимущества и недостатки.
- 80. Низкотемпературная термомеханическая обработка стареющих сплавов (сущность, назначение, влияние на структуру и свойства).
- 81. Высокотемпературная термомеханическая обработка стареющих сплавов (сущность, назначение, влияние на структуру и свойства).
- 82. Низкотемпературная термомеханическая обработка сталей, закаливаемых на мартенсит (сущность, назначение, влияние на структуру и свойства).
- 83. Высокотемпературная термомеханическая обработка сталей, закаливаемых на мартенсит (сущность, назначение, влияние на структуру и свойства).
- 84. Термомеханическая обработка сталей с деформацией во время перлитного превращения (сущность, назначение, влияние на структуру и свойства).
- 85. Предварительная термомеханическая обработка стареющих сплавов и сталей, закаливаемых на мартенсит (сущность, на¬значение, влияние на структуру и свойства).
- 86. Сущность термоциклической обработки и классификация ее видов.
- 87. Разновидности термоциклической обработки сталей и чугунов.
- 88. Сущность, схемы осуществления и классификация видов химико-термоциклической термообработки.
- 89. Сущность, классификация видов и основы технологии восстановительной термической обработки.
- 90. Восстановительная термическая обработка в машиностроительном производстве.

5.2. Темы письменных работ

Самостоятельная работа

ОБОСНОВАНИЕ ВЫБОРА КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ И РАЗРАБОТКА РЕЖИМОВ ИХ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЛЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ МАШИН И ОБОРУДОВАНИЯ

5.3. Фонд оценочных средств

ФОС расположен в разделе «Сведения об образовательной организации» подраздел «Образование» официального сайта 3ГУ

http://polaruniversity.ru/sveden/education/eduop/

Критерии оценки знаний студентов при проведении тестирования по тесту второго типа: тестовое задание по дисциплине содержит 25 вопросов.

- Оценка «отлично» выставляется при условии правильного ответа студента не менее чем 80 % тестовых заданий;
- Оценка «хорошо» выставляется при условии правильного ответа студента не менее чем 60 % тестовых заданий;
- Оценка «удовлетворительно» выставляется при условии правильного ответа студента не менее 45 %; .

Критерии оценки ответов на контрольные вопросы: точность определений и понятий, степень раскрытия сущности вопроса, количество правильно и полностью раскрытых вопросов:

- Оценка «отлично» ставится, если выполнены все требования: точно даны определения и понятия; полностью раскрыта сущности вопроса; даны правильные и полные ответы на все вопросы; логично изложена собственная позиция; сформулированы выводы.
- Оценка «хорошо» основные требования выполнены, но при этом допущены недочёты. В частности, имеются неточности в изложении материала; отсутствует логическая последовательность в суждениях; имеются упущения в ответах.
- Оценка «удовлетворительно» имеются существенные отступления от требований. В частности: тема освещена лишь частично; допущены фактические ошибки в содержании ответов на вопросы; отсутствуют выводы; отсутствуют пояснения к формулам, рисунки.
- Оценка «неудовлетворительно» тема не раскрыта, обнаруживается существенное непонимание проблемы; даны не полные ответы менее чем на 45% вопросов.

Критерии оценки выполнения курсовой работы: правильность выполнения

Оценка «отлично» ставится, если выполнены все требования: точно даны определения и понятия; полностью раскрыта сущности вопроса; даны правильные, полные и обоснованные ответы по выбору материалов и видам термической и ХТО

- Оценка «хорошо» основные требования выполнены, но при этом допущены недочёты. В частности, имеются неточности в изложении материала; имеются упущения в ответах.
- Оценка «удовлетворительно» имеются существенные отступления от требований. В частности: вопрос освещен лишь частично; допущены фактические ошибки в содержании ответов на вопросы; отсутствует обоснование выбора материала

5.4. Перечень видов оценочных средств

Оценочные средства по категории "ЗНАТЬ": курсовая работа, контрольные вопросы, тесты. Оценочные средства по категории "УМЕТЬ": курсовая работа, контрольные вопросы, тесты.

Оценочные средства по категории "ВЛАДЕТЬ":курсовая работа, контрольные вопросы, тесты.

	6. УЧЕБНО-МЕТОДИ	ЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС	циплины (моду.	ЛЯ)
		6.1. Рекомендуемая литература		
		6.1.1. Основная литература		
	Авторы, составители	Заглавие, размещение	Издательство, год	Колич-во
Л1.1	Солнцев Ю.П., Пряхин Е.И.	Материаловедение: учебник для вузов	СПб.: Химиздат, 2004	35
Л1.2	Лахтин Ю.М., Леонтьева В.П.	Материаловедение: допущено Гос. комитетом по народному образованию в качестве учебника для втузов	М.: Альянс, 2013	50
		6.1.2. Дополнительная литература	1	
	Авторы, составители	Заглавие, размещение	Издательство, год	Колич-во
Л2.1	Геллер Ю.А., Рахштадт А.Г.	Материаловедение: Учеб. пособие для вузов	М.: Металлургия, 1989	35
Л2.2	Лахтин Ю.М., Леонтьева В.П.	Материаловедение: учебник для втузов	М.: Машиностроение, 1990	39
Л2.3	Мозберг Р.К.	Материаловедение: учеб.пособие для техн. вузов	М.: Высш. шк., 1991	56

	Авторы, составители	Заглавие, размещение	Издательство, год	Колич-во
Л2.4	Городниченко В.И. [и др.]	Материаловедение: Практикум: для вузов	М.: Университетская книга, Логос, 2006	11
Л2.5	Колачев Б.А., Елагин В.И., Ливанов В.А.	Металловедение и термическая обработка цветных металлов и сплавов: учебник для вузов	М.: МИСИС, 2005	8
Л2.6	Колесов С.Н., Колесов И.С.	Материаловедение и технология конструкционных материалов: учебник для вузов	М.: Высш. шк., 2007	1
Л2.7	Константинов Е.Г.	Материаловедение: лабораторный практикум	Норильск, 1998	4
Л2.8	Сарафанова А.Я.	Материаловедение и технология конструкционных материалов: Лаборат. практикум	Норильск, 1999	31
Л2.9	под ред. Ю.Г. Драгунова, А.С.Зубченко; сост. Драгунов Ю.Г., А. Зубченко, Ю.В. Каширский и др.	Марочник сталей и сплавов	М.: Инновационное машиностроение, 2016	10
Л2.10	Сост.: В.Г. Сорокин, М.А. Гервасьев, В.С. Палеев и др.; Под ред. В.Г. Сорокина, М.А. Гервасьева	Стали и сплавы: Справочник	М.: Интермет инжиниринг, 2003	5
Л2.11	Арзамасов Б.Н., Сидорин И.И., Косолапов Г.Ф.	Материаловедение: учебник для втузов	М.: Машиностроение, 1986	40
Л2.12	автсост. Е.Н. Штанов, И.А. Штанова	Цветные металлы и сплавы: справочник	Н. Новгород: Вента-2, 2001	1
		6.1.3. Методические разработки	_	
	Авторы, составители	Заглавие, размещение	Издательство, год	Колич-во
Л3.1	сост. Е.Г.Константинов; Норильский индустр. ин-т	Материаловедение. Выбор материалов и режимов обработки, обеспечивающих получение оптимальных эксплуатационных свойств деталей: метод. указания к практической работе для студентов спец. 170900	Норильск, 2001	4
Л3.2	Норильский индустр. ин-т; сост. А.Я.Сарафанова	Материаловедение. Теория и технология термической и химико-термической обработки: методические указания к самостоятельной работе	Норильск, 2006	6
Л3.3	Норильский индустр. ин-т; сост. А.Я. Сарафанова	Классификация и маркировка чугунов и углеродистых сталей: метод. указания к практическим работам	Норильск: НИИ, 2007	8
Л3.4	Норильский индустр. ин-т; сост. А.Я. Сарафанова	Классификация, маркировка и свойства цветных металлов и сплавов: метод. указания к практическим работам	Норильск: НИИ, 2010	28
Л3.5	Норильский индустр. ин-т; сост. Сарафанова А. Я.	Классификация, маркировка и свойства легированных конструкционных сталей: метод. указания к практ. работам	Норильск: НИИ, 2011	49
Л3.6	Константинов Е.Г.	Металловедение и термическая обработка: Лабораторный практикум	Норильск, 1994	37
Л3.7	сост. Е.Г.Константинов; Норильский индустр. ин-т	Материаловедение. Выбор материалов и режимов упрочняющей термической обработки: метод. указания к практическим работам	Норильск, 1997	4
Л3.8	Осинцев О.Е.	Металловедение тугоплавких металлов и сплавов на их основе: рекомендовано УМО вузов РФ вузов в качестве учеб. пособия для студентов вузов	М.: Машиностроение, 2013	5
	6.2. Переч	ень ресурсов информационно-телекоммуникационной сети '	'Интернет''	

Э1	\\nii-ftp\Education S:\Кафедра ТМ и О			
	Научно-технический журнал "Вопросы материаловедения" Научно-технический журнал «Вопросы материаловедения» https://elibrary.ru/title_about.asp?id=37686			
	Марочник сталей и сплавов Информационно-справочный портал Марочник сталей и сплавов http://www.splav-kharkov.com/choose_type.ph			
	6.3.1 Перечень программного обеспечения			
	6.3.2 Перечень информационных справочных систем			
6.3.2.1				
6.3.2.2	Научная информационная библиотек. Журнал "Материаловедение" elibrary.ru/title_about.asp?id=7878			
6.3.2.3	Журнал "Материаловедение и термическая обработка металлов			
6.3.2.4	Электронные ресурсы издательства «Elsevier»: Scopus, ScinceDirect, FreedoomCollection: Согласно соглашению о создании			
6.3.2.5	Информационно-справочный портал по металлургии и литейному производству http://metalurgu.ru/opisanie-tehnologicheskih-protsessov-litya/			
6.3.2.6	6 Центральный металлический портал РФ http://metallicheckiy-portal.ru/marki_metallov			
6.3.2.7	.7 Информационно-справочный портал Марочник сталей и сплавов http://www.splav-kharkov.com/choose_type.php			
6.3.2.8	Информационный проект Materiology.info http://materiology.info/			

	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
7.1	Компьютер (Intel Core 2 Duo E6550 2.33GHz, 1Гб ОЗУ, HDD 500 Гб);
7.2	проектор Epson EB-485Wi с интерактивным экраном;
7.3	микроскопы металлографические инвертированные агрегатные ЛабоМет-И с системой визуализации и комплектам микрошлифов - 3 шт.;
7.4	микроскопы металлографические МИМ-7 – 4 шт., ММП-4 (1 шт.)
7.5	твердомеры ТК-14-250, ТК-2М, ТШ-2М;
7.6	Лупы Бринелля - 6 шт.
7.7	Наборы микрошлифов сплавов.
7.8	Учебные кинофильмы.
7.9	Учебные презентации.
7.10	Нагревательные печи СНОЛ (3 шт.)
7.11	Модельный литейный комплект.
7.12	Модели отливок.
7.13	Лабораторные бегуны.
7.14	Маятниковые копры ПК-30, КМ-0,5.
7.15	

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

S:\Кафедра ТМ и О

Курсовая работа ОБОСНОВАНИЕ ВЫБОРА КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ И РАЗРАБОТКА РЕЖИМОВ ИХ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЛЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ МАШИН И ОБОРУДОВАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ

Выполнение заданий предусматривает обоснованный выбор материала и его обработки, в наибольшей степени обеспечивающих эксплуатационную надежность и долговечность деталей и конструкций технологического оборудования. В заданиях сформулированы характерные свойства и эксплуатационные условия конкретных деталей, используемых при изготовлении деталей оборудования металлургических заводов.

Для решения задач необходимо:

- проанализировать условия работы деталей (нагрузка и характер ее приложения, температура и т.д.), что позволяет определить свойство (группу свойств), обеспечивающих эксплуатационную надежность и долговечность конкретной задачи;
- указать возможные виды выхода из строя или разрушений деталей, их наиболее вероятные причины;
- проанализировать методы изготовления детали (литье, ковка, штамповка, сварка, резание) с учетом технологических свойств предлагаемых материалов;
- из предлагаемых материалов выбрать единственно приемлемый и обеспечивающий требуемые свойства, обосновав свой выбор сравнительной оценкой механических, технологических и эксплуатационных свойств всех материалов, предложенных в задаче;
- указать группу выбранного материала по назначению (конструкционные, общего или специализированного

назначения, инструментальные или стали со специальными физическими или эксплуатационными свойствами), охарактеризовать основные требования, предъявляемые к данной группе свойств;

- привести химический состав выбранного материала, указать свойства в исходном состоянии (состоянии поставки) и после применения упрочняющей обработки (в готовом изделии);
- предложить и обосновать (в случае необходимости) режимы термической, химико-термической обработки или наклпа, способствующих достижению оптимальных эксплуатационных свойств материала;
- охарактеризовать влияние легирующих элементов в обеспечении специальных и механических свойств стали или сплава и на превращения в процессе термической обработки