Документ под Федеральное образовательное учреждение Информация о владельце:

высшего образования

ФИО: Игнатенко Виталий Иванович Должность: Проректор по Нарвиченский государственный институт Дата подписания: 19.09.2023 06:1 **Жафедра** «Технологические машины и оборудование»

Уникальный программный ключ:

a49ae343af5448d45d7e3e1e499659da8109ba78

ТЕСТЫ

Для проверки остаточных знаний По дисциплине: «Теоретическая механика»

Направление подготовки: 08.03.01 «Строительство»

Профиль подготовки: «Промышленное и гражданское строительство»

Тесты составлены для проверки остаточных знаний, умений И навыков, формирующих следующие компетенции:

Общепрофессиональные компетенции (ОПК)

ОПК-1 способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и математического (компьютерного) моделирования, теоретического и экспериментального исследования

ОПК-2 способностью выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь их для решения соответствующий физико-математический аппарат

Компетенция	Вопросы	Ответы	Код
ОПК-1	1. Определить проекцию равнодействующей системы сил на ось <i>x</i>	-24,8	1
	F ₁	12,48	2
	F ₂	35	3
	F_1 =10кH; F_2 =50кH; F_3 =20кH	Верный ответ не приведен	4
ОПК-2	2. Груз F находится в равновесии. Указать какая система уравненией для шарнира B верна.	$\sum Fkx = R_3 - R_1 \cos 60^\circ = 0$ $\sum Fky = R_2 - R_1 \cos 30^\circ = 0$	1
		$\sum Fkx = R_3 - R_1 \cos 30^\circ = 0$ $\sum Fky = R_2 - R_1 \cos 60^\circ = 0$	2

Компетенция	Вопросы	Ответы	Код
	1 B y	$\sum Fkx = -R_3 + R_2 \cos 30^\circ = 0$ $\sum Fky = R_2 - R_1 \cos 60^\circ = 0$	3
	2	Верный ответ не приведен	4
ОПК-1	3. Рассчитать величины проекций силы F_5 и F_1 на ось θx , если $F_5 = 16$ кH; $F_1 = 34$,6кH. Определить сумму проекций этих сил.	F ₃ cos45°	1
	$y \mid \stackrel{F_2}{\longrightarrow} f_2 \mid F_4$	−F ₃ cos45°	2
	F ₁ F ₅ F ₅	F_3	3
	$0 \stackrel{ 0 }{\longrightarrow} x$	-F ₃ cos35°	4
ОПК-1	4. Какие силы из заданной системы образуют пары сил? $F_1 = F_4 = F_5$;	$(\overline{F}_1;\overline{F}_4)$ и $(\overline{F}_2;\overline{F}_3)$	1
	$F_1 = F_3 = F_6$. F_1	$(\overline{F}_2;\overline{F}_3)$ и $(\overline{F}_4;\overline{F}_5)$	2
	F_6 45° F_3 45°	$(\overline{F}_4;\overline{F}_5)$ и $(\overline{F}_2;\overline{F}_5)$	3
	F_5 F_4	$(\overline{F}_2; \overline{F}_5)$ и $(\overline{F}_2; \overline{F}_6)$	4
ОПК-1	 Момент пары сил М=104 Н•м. Найти АВ. 	2 м	1
	F'=26 H	4 м	2
	$A \stackrel{\circ}{\longrightarrow} B$	6 м	3
	F	8 м	4
ОПК-1	6. Тело находится в равновесии. m_1 =15 H•м; m_2 =8 H•м; m_3 =12 H•м; m_4 =?	14 Н•м	1

Компетенция	Вопросы	Ответы	Код
	Определить величину пары т4.	19 Н•м	2
	m_1 m_2 m_3	11 Н•м	3
	m ₄ ?	15 Н•м	4
ОПК-1	7. Определить величину главного момента при приведении системы сил к точке A. F ₁ =36кH; F ₂ =18кH; m=45 кH•м	45 кН•м	1
	F_1	72 кН•м	2
	A	81 кН•м	3
	4м	117 кН•м	4
ОПК-2	8. Рассчитать сумму моментов сил относительно точки А.	70 кН•м	1
	15 кН 30 кН 20 кН	340 кН•м	2
	5.	240 кН•м	3
	2м 3м 3м	200 кН•м	4
ОПК-2	9. Для заданной плоской системы произвольно расположенных сил определить величину главного вектора.	22	1
	$F_1=8$ кH; $F_2=20$ кH; $F_3=16$ H•м.	25	2
	F_3 30° F_1	31	3
	$ \begin{array}{c c} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & \\ \hline & $	20,1	4
ОПК-2	10. Как направлен вектор равнодействующей силы, если известно,	F F F 4	1

Компетенция	Вопросы	Ответы	Код
	что F_x = 15H; F_y = -20H.		2
	- x y		2
			3
			4
ОПК-1	11. Точка движется по дуге АВ согласно уравнению	Равномерное	1
	$S = 2 + 0.1t^3$ Определить вид движения точки.	Равноускоренное	2
	определить вид движения то ики.	Равнозамедленное	3
		Неравномерное	4
ОПК-1	12. Точка движется по дуге AB согласно уравнению $S = 0.1t^3 + 0.3t$. Определить начальную скорость и полное	$v_0 = 0.1 \text{ m/c};$ $a = 5.14 \text{ m/c}^2$	1
	ускорение через 2 с движения, если радиус дуги 0,45 м.	$v_0 = 3 \text{ m/c};$ $a = 1,2 \text{ m/c}^2$	2
		$v_0 = 0.3 \text{ M/c};$ $a = 5.14 \text{ M/c}^2$	3
		$v_0 = 0.3 \text{ m/c};$ $a = 5 \text{ m/c}^2$	4
ОПК-1	13. Тело, двигаясь равноускоренно из состояния покоя 10 с, достигло скорости 50м/с.	S=200 м	1
	Определить путь, пройденный телом за это время.	S=250 м	2
		S=285 м	3
		S=315 м	4
ОПК-2	14. Точка движется по линии АБС и в момент t занимает положение В.	Равномерное	1
	Определить вид движения точки. $a_{t=}$ const. a_{t}	Равноускоренное	2
		Равнозамедленное	3
	C v	Неравномерное	4

Компетенция	Вопросы	Ответы	Код
ОПК-1	15. По графику скоростей определить вид движения на участке 3.	Равномерное	1
OHK-1	v , м/с	Равноускоренное	2
		Равнозамедленное	3
	1 2 3 t, c	Неравномерное	4
ОПК-1	16. По приведенным кинематическим графикам определить соответствующий закон движения точки.	$S = \upsilon t$	1
	S, M v, M/c	$S = S_0 + \upsilon t + \frac{at^2}{2}$	2
		$S = \upsilon_0 t + \frac{at^2}{2}$	3
	0 t, c	$S = \upsilon_0 t - \frac{at^2}{2}$	4
ОПК-1	17. Известно, что скорость точки $Av_0=12$ м/с. Определить скорость точки B . $r_1=2$ м	2,4м/с	1
	$r_2=1,4M$	6м/с	2
		8,4 м/с	3
		12м/с	4
ОПК 1	18. Маховое колесо r=0,1 м вращается	$a = 13 \text{ m/c}^2$	1
ОПК-1	равномерно и в момент времени t=13c имеет рад/с. Определить полное	$a = 169 \text{ m/c}^2$	2
	ускорение точек на ободе колеса в этот момент.	$a = 1300 \text{ m/c}^2$	3
		$a = 1690 \text{ m/c}^2$	4
OHIC 1	19. Закон вращательного движения колеса	2 c	1
ОПК-1	$\varphi = 6t - 1.5t^2$ Определить время до полной остановки.	4 c	2
		8 c	3
		10 c	4

Компетенция	Вопросы	Ответы	Код
ОПК-2	20. Чему равна сила давления автомобиля на мост при скорости $\upsilon = 20 M/c$,	27,25 кН	1
	когда он находится на середине моста, если вес автомобиля $G = 35\kappa H$, а радиус	33,22 кН	2
	кривизны моста $r = 800 M$?	35 кН	3
		36,75 кН	4
ОПК-2	21. Точка M движется равномерно по кривой радиуса r . Выбрать направление силы инерции.	A	1
	M M M	Б	2
		В	3
	А Б В Г	Γ	4
ОПК-2	22. Тело массой 8 кг лежит на горизонтальной платформе, которая опускается вниз с ускорением 2 м/с ² .	156,9 H	1
	Определить силу давления тела на платформу.	94,5 H	2
	$v \downarrow a$	78,5 H	3
		62,5 H	4
ОПК-2	23. Определить натяжение тягового каната скрепера А весом 30 H, перемещающегося с ускорением 2 м/с ² . Коэффициент трения	F=16 H	1
	между поверхностями $f = 0.25$.	F=20,5 H	2
	A F 30°	F=27,6 H	3
		F=22 H	4
ОПК-2	24. График изменения скорости лифта при подъеме показан на рисунке. Определить силу натяжения каната, на котором	4,1 кН	1
	подвешен лифт, если вес лифта 5,5 кН (участок 3).	5,5 кН	2

Компетенция	Вопросы	Ответы	Код
	υ, м/c 5 м/c	4,8 кН	3
	1 2 3 0 2c 8c 12c t, c	6,2 кН	4
ОПК-2	25. Определить работу торможения за один оборот колеса, если коэффициент трения между тормозными колодками и колесом $f = 0, 1$. Сила прижатия колодок $Q=100 \text{ H}$.	-6,2 кН	1
		-12,6 кН	2
	0 0	25 кН	3
	Ø400	-18,4 кН	4

Компетенция	Вопросы	Ответы	Код
ОПК-1	1. Определить величину равноде	39,5 кН	1
	йствую	44,4 кН	2
	силы. 15° 0 х	19,5 кН	3
	$F_3 = 30 \text{ kH}$	Верный ответ не приведен	4
ОПК-2	2. Груз F находится в равновесии. Указать, какая система уравнений равновесия верна в этом случае.	$\sum F_{kx} = R_2 - R_1 \cos 60^{\circ} - R_3 \cos 45^{\circ} = 0$ $\sum F_{ky} = R_1 \cos 60^{\circ} - R_3 \cos 45^{\circ} = 0$	1
	1 60° 2	$\sum F_{kx} = R_2 - R_1 \cos 30^{\circ} - R_3 \cos 45^{\circ} = 0$ $\sum F_{ky} = R_1 \cos 60^{\circ} - R_3 \cos 45^{\circ} = 0$	2
	45° 0 x	$\sum_{k_{x}} F_{kx} = R_1 \cos 60^{\circ} - R_3 \cos 45^{\circ} + R_2 = 0$ $\sum_{k_{y}} F_{ky} = R_3 \cos 45^{\circ} - R_1 \cos 60^{\circ} = 0$	3
	$\frac{3}{4}$	Верный ответ не приведен	4
ОПК-1	3. Рассчитать величины проекций всех сил системы на ось $0y$, если F_1 =10кH; F_2	-6,9 кН	1

Компетенция	1	Ответы	Код
	=15,6kH; F_3 =8kH; F_4 =24kH.	-14 кН	2
	F_1 F_2 F_3 F_4	-23,9 кН	3
	45°	6,9 кН	4
ОПК-1	4. Какие силы из заданной системы образуют пару? $F_1 = F_2 = F_3 = F_4 = F_5$	$F_I; F_2$	1
	F_2	$F_I; F_5$	2
	F_1 F_3 F_4	F_3 ; F_4	3
	F_5	F_2 ; F_5	4
ОПК-1	5. Определить момент заданной пары сил. $ F = F' = 20H$	5 Н•м	1
	F I M	10 Н•м	2
	60° ↑ F'	17 Н•м	3
	В	20 Н•м	4
ОПК-1	6. К жестким прямоугольникам приложены пары сил. Какая система пар уравновешена?		1
	Q=10H; P=20H; F=15H; a, b – стороны прямоугольника;		2
	a=3M; b=4M.	?	3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4
ОПК-1	7. Какие уравнения равновесия целесообразно использовать для	$\sum F_{kx} = 0$	1

Компетенция	Вопросы	Ответы	Код
	определения неизвестной силы? C_{x}^{y} 2 кН D	$\sum F_{ky} = 0$	2
	10 kH	$\sum F_{ky} = 0$ $\sum M_B = 0$	3
	R_y $A = R_x$ $B = R_x$	$\sum M_A = 0$	4
ОПК-2	8. Определить алгебраическую сумму моментов сил относительно точки О. OA=AB=BC=CD=AE=0,5 м.	54,8 кН•м	1
	O A 60° 20 KH 30 KH	69,8 кН•м	2
	E 15 κH	119,8 кН•м	3
		127,3 кН•м	4
ОПК-2	9. Найти главный вектор силы. $F_1 = 3H$; $F_2 = 4H$; $F_3 = 10H$; $\alpha = 30^\circ$.	5 кН	1
		2,2 кН	2
		7,3 кН	3
	F_1 F_3	2,5 кН	4
ОПК-2	10. Какой вектор силового многоугольника является равнодействующей силой?	F_2	1
	F_2 F_3	F_4	2
	F_1 F_4	F_5	3
	F_5	F_{I}	4
ОПК-1	11. Точка движется по линии ABC и в момент t занимает положение B.	Равномерное	1

Компетенция	Вопросы	Ответы	Код
	Определить вид движения точки. a _t = const.	Равноускоренное	2
	a_n a_t B	Равнозамедленное	3
	c v	Неравномерное	4
ОПК-1	12. По графику скоростей определить вид движения на участке 3.	Равномерное	1
	v, m/c	Равноускоренное	2
		Равнозамедленное	3
	$0 \qquad \qquad t, c$	Неравномерное	4
ОПИ 1	13. Автомобиль движется по круглому	2 m/c ²	1
ОПК-1	арочному мосту $r = 100$ м согласно уравнению $S = 10t + t^2$.	4 m/c ²	2
	Определить полное ускорение автомобиля через 3 с движения.	$3,24 \text{ m/c}^2$	3
		$6,67 \text{ m/c}^2$	4
0	14. Тело, двигаясь из состояния покоя	S = 125 м	1
ОПК-2	равноускоренно, достигло скорости $v = 10$ м/с за 25 с. Определить путь, пройденный	S = 625 м	2
	телом за это время.	S = 1250 м	3
	<u> </u>	S = 1450 м	4
ОПК-1	15. Закон вращательного движения тела	2,4 с	1
	Определить, за какое время угловая	14 c	2
	скорость тела достигнет величины	7 c	3
		12,4 c	4
ОПК-1	16. Выбрать соответствующий кинематический график движения, если	A	1
	закон движения	Б	2

Компетенция	Вопросы	Ответы	Код
		В	3
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ	4
ОПК-1	17. Груз F начинает двигаться вверх из состояния покоя с постоянным ускорением $a = 1,26 \text{ m/c}^2$.	n = 10,5 об/мин	1
	Определить частоту вращения колеса через 5 с после начала движения. Ø1,2 м	n = 62,5 об/мин	2
	\bar{v}	n = 100 об/мин	3
	F ω	n = 597 об/мин	4
ОПК-1	18. Известно, что скорость точки $Av_A = 12$ м/с. Определить скорость точки В.	2,4 м/с	1
	$r_1 = 2 \text{ M}; r_2 = 1,4 \text{ M}.$	6 м/с	2
		8,4 м/с	3
	r_2 B	12 м/с	4
ОПК-1	19. На материальную точку действует одна постоянная сила. Как будет двигаться точка?	Равномерно прямолинейно	1
	точка? Б. С. т	Равномерно криволинейно	2
		Неравномерно прямолинейно	3
		Неравномерно криволинейно	4
ОПК-2	20. Точка М движется равномерно по кривой радиуса r. Выбрать направление	A	1

Компетенция	Вопросы	Ответы	Код
	силы инерции. М	Б	2
		В	3
	А Б В Г	Γ	4
ОПК-2	21. Определить силу давления человека на пол кабины лифта в случае, если лифт	506 H	1
OIIK-2	поднимается с ускорением $a = 3 \text{ м/c}^2$.	679 H	2
	Вес человека $G = 700 \text{ H}$; $q = 9.81 \text{ м/c}^2$.	700 H	3
		914 H	4
ОПК-2	22. Мотоцикл движется по выпуклому мостику со скоростью $v = 20$ м/с. Масса мотоциклиста с мотоциклом = 200 кг,	2762 кН	1
	радиус мостика r = 100 м. Определить силу давления мотоцикла на мост при	800 кН	2
	нахождении его по середине моста.	1962 кН	3
		1162 кН	4
ОПК-2	23. Определить работу силы тяжести при перемещении груза из положения А в положение В по наклонной плоскости	30 Дж	1
	АБВ. Трением пренебречь. АБ = 2 м; БВ = 1 м; G = 100 H.	-30 Дж	2
	45° B	100 Дж	3
	30°	-130 Дж	4
ОПК-2	24. Определить работу торможения за один оборот колеса, если коэффициент	-6,2 Дж	1
	трения между тормозными колодками и колесом $f = 0,1$. Сила прижатия колодок $Q = 100 \text{ H}$.	-12,6 Дж	3 4 1 2 3
		25 Дж	3
		-18,4 Дж	4

Компетенция	Вопросы	Ответы	Код
	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		
ОПК-2	25. Точильный камень $d = 0,4$ м делает $n = 120$ об/мин. Обрабатываемая деталь прижимается силой $F = 10$ Н. Какая	6,2 Вт	1
	мощность затрачивается на шлифование, если коэффициент трения колес о деталь $f = 0.25$?	12,5 Вт	2
		24,9 Вт	3
		62,4 Вт	4

Компетенция	Вопросы	Ответы	Код
ОПК-1	1. Определить проекцию	26,54 кН	1
	$F_1 = 6 \mathrm{KH}$	3,87 кН	2
	45° $F_3 = 10 \text{ kH}$	6,28 кН	3
	$F_2 = 4 \text{ кH}$ равнодействующей на ось x .	Верный ответ не приведен	4
ОПК-2	2. Груз находится в покое. Указать какая система уравнений равновесия равна в этом	$\sum F_{kx} = R_1 \cos 60^{\circ} + R_2 = 0$ $\sum F_{ky} = R_3 - R_1 \cos 30^{\circ} = 0$	1
	случае. $\frac{2}{y}$ $\frac{1}{1}$	$\sum F_{kx} = R_1 \cos 30^{\circ} - R_2 = 0$ $\sum F_{ky} = R_3 + R_1 \cos 60^{\circ} = 0$	2
	60° 30° 3	$\sum F_{kx} = R_1 \cos 30^{\circ} - R_2 = 0$ $\sum F_{ky} = -R_3 + R_1 \cos 60^{\circ} = 0$	3
	$\overline{\downarrow}_{\bar{F}}$	Верный ответ не приведен	4
ОПК-1	3. Рассчитать сумму проекций всех сил системы на ось $0y$, если F_1 =5кH; F_2 =22кH;	-63,3 кН	1
	$F_3 = 40$ кH; $F_4 = 8$ кH; $F_5 = 50$ кH.	-71,9 кН	2

Компетенция	Вопросы	Ответы	Код
	y \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-93 кН	3
	F_1 F_3 F_4 F_5 F_5 F_6 F_7 F_8 F_8 F_8 F_8 F_9	-115 кН	4
ОПК-1	4. Какие силы из заданной системы образуют пару сил? Модули всех сил	F_1 и F_5	1
	равны. <i>F</i> ₃	F_2 и F_4	2
	F_2 F_4	F_1 и F_3	3
	F_1 F_5	F_3 и F_5	4
ОПК-1	5. Как измениться момент пары при повороте сил на 30° ? $a = 5$ м	Уменьшится в 1,15 раза	1
	$F_{I} = 10H$ $30^{\circ} A$	Увеличится в 1,15 раза	2
	\bar{F}	Увеличится в 1,5 раза	3
	F' 30°	Не изменится	4
ОПК-1	6. К жестким прямоугольникам приложены пары сил. Какая система пар		1
	уравновешена?	?	2
		•	3
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4
ОПК-1	7. Определить величину главного вектора при приведении системы сил к точке A. $F_I = 40 \text{kH}$;	30 кН	1
	$F_2 = 30 \text{ kH}$	40 кН	2

Компетенция	Вопросы	Ответы	Код
	F ₁ 4 M	50 кН	3
	2 M	60 кН	4
ОПК-2	8. Определить алгебраическую сумму моментов сил относительно точки В. BC=4м; AD=DE=CD=2м.	120 кН•м	1
	$F_1 = 12 \text{ kH}$	96 кН•м	2
	$F_2 = 30 \text{ kH}$ $F_3 = 40 \text{ kH}$	146 кН•м	3
	1 -	224 кН•м	4
ОПК-2	9. Для заданной плоской системы произвольно расположенных сил определить величину главного вектора.	29 кН	1
	$F_1 = 30 \text{кH}; F_2 = 10 \text{кH}; F_3 = 20 \text{кH}.$	33,5 кН	2
	30°	36 кН	3
	F_3 0 F_1 x	4 кН	4
ОПК-2	10. Какой вектор силового многоугольника является равнодействующей силой?	F ₆	1
	F_1 F_2 F_3 F_4 F_5	F ₅	2
	F6	F ₄	3
		F ₁	4
ОПК-1	11. Точка движется по линии ABC и в момент t занимает положение B. Определить вид движения точки. a _t =	Равномерное	1
	определить вид движения точки. a_t — const.	Равноускоренное	2
		Равнозамедленное	3

Компетенция	Вопросы	Ответы	Код
	A a_n B v	Неравномерное	4
	12. По графику скоростей определить вид	Равномерное	1
ОПК-1	движения на участке 3. <i>v</i> , м/с	Равноускоренное	2
		Равнозамедленное	3
	1 2 3 t, c	Неравномерное	4
ОПІС 1	13. Автомобиль движется по круглому	2 m/c ²	1
ОПК-1	арочному мосту $r = 100$ м согласно уравнению $S = 10t + t^2$.	4 m/c ²	2
	Определить полное ускорение автомобиля через 3 с движения.	$3,24 \text{ m/c}^2$	3
		6,67 m/c ²	4
	14. Тело, двигаясь из состояния покоя	S = 125 м	1
ОПК-2	равноускоренно, достигло скорости $v = 10$ м/с за 25 с. Определить путь, пройденный	S = 625 м	2
	телом за это время.	S = 1250 м	3
		S = 1450 м	4
ОПИ 1	15. Закон вращательного движения тела	2,4 c	1
ОПК-1	Определить, за какое время угловая	14 c 7 c	3
	скорость тела достигнет величины	12,4 c	4
ОПК-1	16. Выбрать соответствующий кинематический график движения, если	A	1
	закон движения	Б	2
	φ φ φ	В	3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Γ	4
ОПК-1	17. Груз F начинает двигаться вверх из состояния покоя с постоянным ускорением	n = 10,5 об/мин	1

Компетенция	Вопросы	Ответы	Код
	$a = 1,26 \text{ m/c}^2.$	n = 62,5 об/мин	2
	Определить частоту вращения колеса через		
	5 с после начала движения. Ø1,2 м	n = 100 об/мин	3
	\bar{v}	n = 597 об/мин	4
ОПК-1	18. Известно, что скорость точки $Av_A = 12$ м/с. Определить скорость точки В.	2,4 м/с	1
	$r_1 = 2 \text{ M}; r_2 = 1,4 \text{ M}.$	6 м/с	2
		8,4 м/с	3
	r_2 B	12 м/с	4
ОПК-1	19. На материальную точку действует одна постоянная сила. Как будет двигаться	Равномерно прямолинейно	1
	точка? —	Равномерно криволинейно	2
		Неравномерно прямолинейно	3
		Неравномерно криволинейно	4
ОПК-2	20. Определить числовое значение ускорения материальной точки массой 5 кг	$a=4 \text{ m/c}^2$	1
	под действием системы сил. $F_1 = 10$ кH; $F_2 = 2$ кH; $F_3 = 8$ кH.	$a=3,6 \text{ m/c}^2$	2
	_F \30° \ F ₃	a=2,9 м/с ²	3
	F_1 F_2 M M	a=6,3 м/с ²	4
ОПК-2	21. Определить силу давления человека на пол кабины лифта в случае, если лифт	506 H	1

Вес человека G = 700 H; q = 9,81 м/с². 700 H 22. Мотоцикл движется по выпуклому мостику со скоростью v = 20 м/с. Масса мотоциклиста с мотоциклом = 200 кг, радиус мостика г = 100 м. Определить силу давления мотоцикла на мост при нахождении его посередине моста. 23. Определить работу торможения за один оборот колеса, если коэффициент трения между тормозными колодками и колесом f = 0,1. Сила прижатия колодок Q = 100 H.	34124
ОПК-2 22. Мотоцикл движется по выпуклому мостику со скоростью <i>v</i> = 20 м/с. Масса мотоциклиста с мотоциклом = 200 кг, радиус мостика г = 100 м. Определить силу давления мотоцикла на мост при нахождении его посередине моста. 23. Определить работу торможения за один оборот колеса, если коэффициент трения между тормозными колодками и колесом <i>f</i> = 0,1. Сила прижатия колодок Q = 100 H. 914 H 2762 кН 1162 кН 1162 кН -6,2 Дж -12,6 Дж	41234
ОПК-2 22. Мотоцикл движется по выпуклому мостику со скоростью <i>v</i> = 20 м/с. Масса мотоциклиста с мотоциклом = 200 кг, радиус мостика r = 100 м. Определить силу давления мотоцикла на мост при нахождении его посередине моста. 23. Определить работу торможения за один оборот колеса, если коэффициент трения между тормозными колодками и колесом <i>f</i> = 0,1. Сила прижатия колодок Q = 100 H. 2762 кН 800 кН 1162 кН 1162 кН -6,2 Дж -12,6 Дж	1 2 3
ОПК-2 мостику со скоростью $v = 20 \text{ м/с}$. Масса мотоциклиста с мотоциклом = 200 кг , радиус мостика $r = 100 \text{ м}$. Определить силу давления мотоцикла на мост при нахождении его посередине моста. 1962 кН 23. Определить работу торможения за один оборот колеса, если коэффициент трения между тормозными колодками и колесом $f = 0,1$. Сила прижатия колодок $Q = 100 \text{ H}$.	3
радиус мостика r = 100 м. Определить силу давления мотоцикла на мост при нахождении его посередине моста. 1962 кН 23. Определить работу торможения за один оборот колеса, если коэффициент трения между тормозными колодками и колесом f = 0,1. Сила прижатия колодок Q = 100 H.	3
ОПК-2 23. Определить работу торможения за один оборот колеса, если коэффициент трения между тормозными колодками и колесом f = 0,1. Сила прижатия колодок $Q = 100 \text{ H}$.	4
ОПК-2 23. Определить работу торможения за один оборот колеса, если коэффициент трения между тормозными колодками и колесом $f = 0,1$. Сила прижатия колодок $Q = 100 \text{ H}$.	
оборот колеса, если коэффициент трения между тормозными колодками и колесом f = 0,1. Сила прижатия колодок $Q = 100 \text{ H}$.	_
= 0,1. Сила прижатия колодок Q = 100 H. $-12,6$ Дж	1
Q 25 Дж	2
	3
-18,4 Дж	4
ОПК-2 лебедки при подъеме груза G = 1 кН на	1
высоту 10 м за 5 с.	2
	3
2,5 кВт ⁴	4
ОПК-2 условию вопроса 3, если известна	1
мощность электродвигателя лебедки $P=2,5$ кВт	2

Компетенция	Вопросы	Ответы	Код
		0,8	3
		0,9	4

Компетенция	Вопросы	Ответы	Код
ОПК-1	1. Определить проекцию равнодействующей плоской системы	11 кН	1
	четырех сходящихся сил на ось θx . F_{1x} =5H; F_{2x} =-16H; F_{3x} =12H; F_{4x} =10H; F_{1y} =3H; F_{2y} =12H; F_{3y} =-30H; F_{4y} =15H;	16 кН	2
	1 1y 211,1 2y 1 2 11,1 3y 2 311,1 4y 1311,	7 кН	3
		Верный ответ не приведен	4
ОПК-2	2. Груз F находится в равновесии. Указать какой из треугольников сил для шарнира В	R_A R_D R_A	1
	построен верно. R – соответствующая реакция связи.	R_{c} R_{D} R_{D}	2
	50° 60° D	R_C R_C R_C R_C R_C R_C R_C R_C	3
		V 10 V Np	4
ОПК-1	3. Рассчитать сумму проекции силы F_6 на ось θx , если F_6 =28кH.	F ₁ cos60°	1
	y F_2 F_5	F ₁ cos 30°	2
	F_1 F_3 F_6	-F ₁	3
	0 45° x	−F _l cos60°	4
ОПК-1	4. Какие силы из заданный системы образуют пару сил? Модули всех сил	F_1 и F_3	1
	равны.	F_4 и F_8	2
		F_2 и F_6	3

Компетенция	Вопросы	Ответы	Код
	F_6 F_8 F_8 F_7 F_8 F_8 F_8	F_3 и F_7	4
ОПК-1	5. Известно, что пары сил $(F_1 \text{и} F_1)$ и $(F_2 \text{и} F_2)$ эквивалентны. $F_1 = 2\text{H}$;	0,8 м	1
	$F_2 = 5H;$ $H_1 = 0,4M;$ F_1	0,16 м	2
	Определить H_2 . H_1 F_2	0,24 м	3
		0,36 м	4
ОПК-1	6. К жестким треугольникам приложены пары сил. Какая система пар уравновешена?		1
	a=3м; b =4м; Q =9H; F =12H; P =15H; a, b – стороны прямоугольника.	0	2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$?	3
	I 2 3 4		4
ОПК-1	7. Чему равен главный вектор системы сил?	20,5 кН	1
	B 30 KH C	30 кН	2
	20 kH	42,4 кН	3
	A	60 кН	4
ОПК-2	8. Определить алгебраическую сумму моментов сил относительно точки А.	0	1
		77,6 кН•м	2

Компетенция	Вопросы	Ответы	Код
	45° 60 KH 25 KH 60° 100 KH·M	178,8 кН•м	3
	3 M 2 M 2 M 3 M	277,6 кН•м	4
ОПК-2	9.Найти главный вектор системы сил, если F_1 =6H; F_2 =2H; F_3 =3H; F_4 =9H; F_5 =2H. Круг Ø=1м.	8 H	1
	F_4	2 H	2
	F_1 F_2 F_5 F_5	0	3
	F_3	6 H	4
ОПК-2	10. Какой вектор силового многоугольника является равнодействующей силой?	F ₁	1
	F1	F_2	2
	F:	F ₅	3
	F_i F_i	F_4	4
ОПК-1	11. Точка движется по линии АВС равноускоренно. Как изменится полное	Не изменится	1
	ускорение точки в момент перехода из точки В в точку В? В В'	Изменится по величине	2
	A	Изменится по направлению	3
	c	Изменится по величине и направлению	4
ОПК-1	12. По приведенным кинематическим графикам определить соответствующий закон движения точки.		1
	A		2
			3

Компетенция	Вопросы	Ответы	Код
	S, M v, M/c v, M/c t, c		4
ОПК-1	13. Точка движется равноускоренно по окружности r = 100 м согласно уравнению		1
OHK-1			2
	Определить начальную скорость точки.		3
			4
ОПК-2	14. Тело движется по дуге радиуса 50 м с постоянной скоростью 18 км/ч. Определить		1
	ускорение тела.		2
			3
			4
ОПК-1	15. По заданному закону вращения регулятора	Равномерное	1
	Определить вид движения.	Равноускоренное	2
	определить вид движения.	Равнозамедленно е	3
		Переменное	4
ОПК-1	16. Закон вращательного движения колеса	2 c	1
01111 1	Определить время до полной остановки.	4 c	2
		8 c	3
		10 c	4
ОПК-1	17. При вращении скорость маховика изменяется по графику. ", об/мин	1,2 рад/c ²	1
	n ₁ coj simi	2,2 рад/c ²	2
	0 t ₁ t, c	4,2 рад/c ²	3

Компетенция	Вопросы	Ответы	Код
	Определить угловое ускорение маховика в конце рассматриваемого участка. $n_1 = 420 \text{ об/мин}; \\ t_1 = 20 \text{ c}.$	$2,8$ рад/ c^2	4
ОПК-1	18. Определить нормальное ускорение точек на ободе колеса диаметром 0,2 м, если закон движения	0.4 m/c^2 7.2 m/c^2 11.7 m/c^2 23.3 m/c^2	1 2 3 4
ОПК-1	19. Какое ускорение получит свободная материальная точка под действием силы, равной 0,5 ее веса?		1 2 3 4
ОПК-2	20. Материальная точка движется под действием сил: $F_1 = 10~H; F_2 = 20~H; F_3 = 15~H; m = 10~\kappa z.$ Определить величину ускорения точки.		1 2
	F_1 F_2 45°		3
	$m F_3$		4
ОПК-2	21. Определить натяжение тягового каната скрепера А весом 30 Н, перемещающегося с	F = 16 H	1
	ускорением 2 м/ c^2 . Коэффициент трения между поверхностями $f = 0,25$.	F = 20,5 H	2
	A F 30°	F = 27,6 H	3
		F = 22 H	4
ОПК-2	22. В шахту опускается лифт весом 4,5 кН. График изменения скорости лифта показан на рисунке. Определить силу натяжения	$F_{H} = 4,5 \text{ kH}$	1
	каната, поддерживающего лифт (на участке 1).	$F_{H} = 3.6 \text{ kH}$	2
		$F_{H}=5,4$ к H	3

Компетенция	Вопросы	Ответы	Код
	v, m/c 1 2 3 0 2c 8c 10c 1, c	F _H = 13,5 кН	4
	23. Вагонетка массой 500 кг катится	122,6 Дж	1
ОПК-2	равномерно по рельсам и проходит	- 122,6 Дж	2
	расстояние 25 м. Чему равна работа силы	- 12,5 Дж	3
	тяжести? Движение прямолинейное по горизонтальному пути.	0	4
	24. Определить силу сопротивления воды	10 кН	1
ОПК-2	корпусу теплохода при движении со	25 кН	2
	скоростью 18 км/ч. Мощность двигателя	36 кН	3
	450 кВт, КПД силовой установки 0,4.	90 кН	4
	25. Вычислить вращающий момент на валу	5 Н•м	1
ОПК-2	электродвигателя при заданной мощности 7	46,7 Н•м	2
	кВт и угловой скорости 150 рад/с.	78 Н•м	3
		1080 Н•м	4

Компетенция	Вопросы	Ответы	Код
ОПК-1	1. Определить проекцию равнодействующей системы сил на ось $0y$.	11,9 кН	1
	$F_2 = 8 \text{ kH}$	31,9 кН	2
	$F_1 = 10 \text{ kH}$	-8,1 кН	3
	$F_3 = 20 \text{ kH}$ 0 x	Верный ответ не приведен	4
ОПК-2	2. Груз F находится в равновесии. Указать, какие условия равновесия для точки В записаны верно.	$\sum F_{kx} = R_3 - R_1 \cos 60^{\circ} = 0$ $\sum F_{ky} = R_2 - R_1 \cos 30^{\circ} = 0$	1
	30° 3 3	$\sum F_{kx} = R_3 + R_1 \cos 60^{\circ} = 0$ $\sum F_{ky} = -R_2 + R_1 \cos 30^{\circ} = 0$	2
	2 90°	$\sum F_{kx} = F + R_3 \cos 60^{\circ} = 0$ $\sum F_{ky} = R_2 - R_1 \cos 30^{\circ} = 0$	3
		Верный ответ не приведен	4

Компетенция	Вопросы	Ответы	Код
ОПК-1	3. Рассчитать величину проекции силы F_4 на ось θx , если $F_4 = 42$ кН	42 кН	1
	F_3 F_4 F_5	-33 кН	2
	30° F ₁ F ₂ 45°	-29 кН	3
	$\frac{1}{0}$	29,7 кН	4
ОПК-1	4. Какие силы из заданной системы образуют пару сил? Модули сил F_1 , F_2 , F_3 , F_5 равны.	F ₄ и F ₆	1
	$F_1 = 10 \text{ H}$ 30° F_3 F_4 F_5 F_6	F ₅ и F ₆	2
	60°	F ₃ и F ₅	3
	F_2 ; $F_4 = F_6 = 18 \text{ H}$	F ₃ и F ₂	4
ОПК-1	5. Момент пары сил <i>m</i> =35 Н•м; <i>F</i> =10 Н. Найти AB.	3,5 м	1
	A	4 м	2
	F 60°	5,5 м	3
	B	8 м	4
ОПК-1	6. Найти момент равнодействующей пары сил.	11 Н•м	1
	5 H	22 Н•м	2
	(11 H) (0,8 M)	30 Н•м	3
	1,5 M 10 H	0	4
ОПК-1	7. Рассчитать главный момент системы сил относительно точки O .	9 кН•м	1
		21 кН•м	2

Компетенция	Вопросы	Ответы	Код
	0,6 M	46 кН•м	3
	$F_1 = 15 \text{ kH};$ $F_2 = 20 \text{ kH};$ $F_3 = 25 \text{ kH};$	60 кН•м	4
ОПК-2	8. Найти момент в заделке M_R R_y 60° 18 кН 60° $18 \text{ KH} \cdot \text{M}$	20,2 кН•м	1
	R _x 6 KH	26,8 кН•м	2
	M _R 3 _M 3 _M 4 _M	66,8 кН•м	3
		146,8 кН•м	4
ОПК-2	9. Найти главный вектор системы относительно точки <i>O</i> . F ₁ =6кH; F ₂ =2кH; F ₃ =2кH; F ₄ =8кH; F ₅	14 Н•м	1
	$=2\kappa H$ Круг Ø=1м. F_4 у F_5	0	2
	$F_1 \downarrow 0$	4 Н•м	3
	F_2 F_3	6 Н•м	4
ОПК-2	10. Какой вектор силового многоугольника является равнодействующей силой?	F_1	1
	F_5 F_6	F_5	2
	F_1	F_3	3
	F_4 F_2	F_4	4
ОПК-1	11. Точка движется прямолинейно согласно уравнению		1

Компетенция	Вопросы	Ответы	Код
	. Определить начальную скорость и ускорение на третьей секунде движения.		2
	y coop come of control control		3
			4
ОПК-1	12. По заданному графику скоростей точки определить путь, пройденный	S = 96 м	1
	точкой за время движения. v, м/c 5 м/с	S = 125 м	2
		S = 196 м	3
	0 10 c 30 c t, c	S = 921 м	4
ОПК-1	13. Тело, имевшее начальную скорость 120 м/с, остановилось, пройдя 1200 м.	t = 20 c	1
	Определить время до остановки.	t = 6 c	2
		t = 10 c	3
		t = 15 c	4
ОПК-2	14. Закон движения колеса	24 рад/с	1
	Определить угловую скорость вращения	15,8 рад/с	2
	колеса в момент t = 5 c.	75,4 рад/с	3
		131,2 рад/с	4
ОПК-1	15. Скорость ротора менялась согласно графику и за 120 оборотов достигла	4,8 c	1
	ω, рад/с	15 c	2
		30 c	3
	0 <i>t</i> , с Определить время разгона до указанной скорости.	42 c	4

Компетенция	Вопросы	Ответы	Код
ОПК-1	16. При вращении колеса скорость и ускорение в точке А имеют указанные на чертеже направления. Определить вид	Равномерное	1
	вращения, если $a_i $ A_i v	Равноускоренное	2
	a_n	Равнозамедленно е	3
		Переменное	4
ОПК-1	17. Колесо вращается с частотой n = 250 об/мин. Определить полное ускорение	20.8 m/c^2	1
OHK-1	точек на ободе колеса, $r = 0.8$ м.	547 м/c ²	2
		$12,5 \text{ m/c}^2$	3
		4620 м/c ²	4
ОПК-1	18. Через 5 с движения под действием постоянной силы материальная точка	F = 92,5 H	1
	приобрела скорость 15 м/с. Сила тяжести 600 Н. Определить величину силы,	F = 183 H	2
	действующей на точку.	F = 421 H	3
		F = 600 H	4
ОПК-1	19. Материальная точка движется под действием системы сил. Определить		1
	величину ускорения точки. $F_1 = 18 \text{ H}$; $F_2 = 30 \text{ H}$; $F_3 = 25 \text{ H}$; $m = 2 \text{ кг}$.		2
	F ₂ 45°		3
	F_1 F_3		4
ОПК-2	20. Точка М движется неравномерно криволинейно. Выбрать формулу для		1
	расчета силы инерции. $M \downarrow v$	_	2
			3
	r		4
ОПК-2	21. Тело массой 300 кг поднимается вверх по наклонной плоскости согласно	1,98 кН	1

Компетенция	Вопросы	Ответы	Код
	уравнению $S = 2,5t^2$.	2,7 кН	2
	Коэффициент трения $f = 0,2$. Определить величину движущей силы.	3,5 кН	3
	30°	4,9 кН	4
ОПК-2	22. Выбрать подходящую формулу для расчета работы силы F, приложенной к	_	1
	ободу колеса. t – касательная в точке приложения, n – нормаль.	_	2
	$rac{n}{\sqrt{F}}t$	_	3
	$\frac{1}{d}$	_	4
ОПК-2	23. Определить потребную мощность мотора лебедки при подъеме груза G = 2,6	3,1 кВт	1
	кН с постоянной скоростью 1,5 м/с. КПД механизма лебедки 0,8.	3,9 кВт	2
		4,9 кВт	3
	¥G	5,2 кВт	4
ОПК-2	24. Вычислить вращающий момент на выходном валу электродвигателя.	2,6 Н•м	1
	Мощность электродвигателя 2 кВт, частота вращения вала 750 об/мин.	25,5 Н•м	2
		156 Н•м	3
		1500 Н•м	4
ОПК-2	25. Определить мощность на тяговом тросе при перемещении груза m = 10 кг по	4,4 B _T	1
_	горизонтальной плоскости со скоростью 2 м/с. Коэффициент трения $f = 0,22$.	9,6 Вт	2
	m F → 1111111111111111111111111111111111	20 Вт	3

КОДЫ ПРАВИЛЬНЫХ ОТВЕТОВ К ТЕСТАМ ПО ДИСЦИПЛИНЕ «ТЕХНИЧЕСКАЯ МЕХАНИКА»

Направление подготовки 08.03.01 «Строительство», Профили подготовки «Промышленное и гражданское строительство», «Теплогазоснабжение и вентиляция»,

«Водоснабжение и водоотведение»

Neg-15, Ne-16

ONK-1, ONK-2

ропросы	код			
вопросы –	B. 1	B. 2	B.3	
1.	3	4	3	
2.	3 2	1	2	
3.	3	2	4	
4.	3	2 2 1	3	
5. 6.	1		1	
6.	2	3	1	
7.	1	1	4	
8.	1	2	4	
9.	4	3	3	
10.	2	1	3	
11.	2 2	1	1	
11. 12.	4	3	3	
13.	4	3	4	
14.	2	4	4	
14. 15.	3	2	4	
16.	2	1	4	
17.	1	2	3	
17. 18.	2	4	4	
19.	4	1	1	
20.	3	2	1	
21.	3	3	3	
22.	2	3	3	
23.	2	2	3	
24.	4	2	4	
25.	4	4	1	

Ботвиньева	И.П.