Документ подписан проступиние черство инауки и высшего образования Российской Федерации

Информация о владельце:

ФИО: Игнатенко Виталий Ива Федеральное государственное бюджетное образовательное учреждение

Должность: Проректор по образовательной деятельности и молвистолобразования

Дата подписания: 15.05.2023 0834нолярный государственный университет им. Н.М. Федоровского»

Уникальный программный ключ:

a49ae343af5448d45d7e3e1e499659da8109ba78

(3ГУ)

УТВЕРЖДАЮ Зав. кафедрой

зачеты 4

к.с.-х.н., доцент О.В.Носова

Кристаллохимия

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Металлургия цветных металлов

Учебный план 26.04.2022. бак.-очнозаочн. 22.03.02_MЦ-2022.plx

Направление подготовки: Металлургия

Квалификация бакалавр

Форма обучения очно-заочная

Общая трудоемкость 3 ЗЕТ

Часов по учебному плану 108 Виды контроля в семестрах:

в том числе:

 аудиторные занятия
 16

 самостоятельная работа
 92

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	4 (2.2)		Итого		
Недель	1	6			
Вид занятий	УП РП		УП	РП	
Лекции	8	8	8	8	
Практические	8 8		8	8	
Итого ауд.	16 16		16	16	
Контактная работа	16 16		16	16	
Сам. работа	92	92	92	92	
Итого	108 108		108	108	

Программу составил(и)):
-----------------------	----

к. г. н. Доцент Черемисин А.А.

Согласовано:

к.т.н. Доцент Карманоская Н.В.

Рабочая программа дисциплины

Кристаллохимия

разработана в соответствии с ФГОС:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 22.03.02 Металлургия (приказ Минобрнауки России от 02.06.2020 г. № 702)

Рабочая программа одобрена на заседании кафедры

Металлургия цветных металлов

Протокол от 21.06.2017г. № 10 Срок действия программы: 2017-2021 уч.г. Зав. кафедрой к.с.-х.н., доцент О.В.Носова

	Визирование РПД для исполнения в очередном учебном году
к.сх.н., доцент О.В.Носова	2023 г.
Рабочая программа пересмотрисполнения в 2023-2024 учебниметаллургия цветных метал	ом году на заседании кафедры
	Протокол от
	Визирование РПД для исполнения в очередном учебном году
к.сх.н., доцент О.В.Носова	2024 г.
Рабочая программа пересмотри исполнения в 2024-2025 учебни Металлургия цветных метал	ом году на заседании кафедры
	Протокол от 2024 г. № Зав. кафедрой к.сх.н., доцент О.В.Носова
	Визирование РПД для исполнения в очередном учебном году
к.сх.н., доцент О.В.Носова	2025 г.
Рабочая программа пересмотрисполнения в 2025-2026 учебния и металлургия цветных метал	ом году на заседании кафедры
	Протокол от
	Визирование РПД для исполнения в очередном учебном году
к.сх.н., доцент О.В.Носова	2026 г.
Рабочая программа пересмотри исполнения в 2026-2027 учебни Металлургия цветных метал	ом году на заседании кафедры
	Протокол от

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 формирование у студентов современных представлений о свойствах атомов и их связей в кристаллической структуре, зависимости формы кристаллов от химического состава вещества, о свойствах веществ в кристаллическом состоянии.

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП					
Ці	икл (раздел) ООП: Б1.В.ДВ.05					
2.1	Требования к предварительной подготовке обучающегося:					
2.1.1	Математический анализ					
2.1.2	Неорганическая химия					
2.1.3	Введение в профиль					
2.1.4	Математический анализ					
2.1.5	Неорганическая химия					
2.1.6	Введение в профиль					
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как					
	предшествующее:					
	Методы контроля и анализа веществ					
	Обогащение руд цветных металлов					
2.2.3	Элементы химической технологии					
2.2.4	Металлургия благородных металлов					
2.2.5	Металлургия тяжелых цветных металлов					
2.2.6	Теории металлургических процессов					
2.2.7	Переработка серосодержащих газов					
2.2.8	Производство элементарной серы					
2.2.9	Методы контроля и анализа веществ					
2.2.10						
2.2.11	Элементы химической технологии					
2.2.12	Металлургия благородных металлов					
2.2.13	Переработка серосодержащих газов					
2.2.14	Производство элементарной серы					

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ИНДИКАТОРЫ ИХ ДОСТИЖЕНИЯ

ПК-2: Выявляет объекты для улучшения в технике и технологии

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание
	Раздел 1. Семестр 3						
1.1	Введение. Задачи современной кристаллохимии. Свойства атомов. Поляризуемость атомов и ионов. Кислотно-основные свойства атомов и ионов. /Лек/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Э1	0	
1.2	Введение. Задачи современной кристаллохимии. Свойства атомов. Поляризуемость атомов и ионов. Кислотно-основные свойства атомов и ионов. /Пр/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.3	Введение. Задачи современной кристаллохимии. Свойства атомов. Поляризуемость атомов и ионов. Кислотно-основные свойства атомов и ионов. /Ср/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	

						ī	
1.4	Силы и энергия сцепления атомов в кристалле. Ионная модель и энергия решетки. Ковалентная и донорно-акцепторная связь Связи, промежуточные между ионными и ковалентными. Степень ионности связи. /Лек/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.5	Силы и энергия сцепления атомов в кристалле. Ионная модель и энергия решетки. Ковалентная и донорно-акцепторная связь Связи, промежуточные между ионными и ковалентными. Степень ионности связи. /Пр/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.6	Силы и энергия сцепления атомов в кристалле. Ионная модель и энергия решетки. Ковалентная и донорно-акцепторная связь Связи, промежуточные между ионными и ковалентными. Степень ионности связи. /Ср/	4	8	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.7	Металлическая связь. Зонная энергетическая структура кристалла. Переход от металлической к ковалентной связи. Остаточная (вандер-ваальсова) связь. Дисперсионные силы. /Лек/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.8	Металлическая связь. Зонная энергетическая структура кристалла. Переход от металлической к ковалентной связи. Остаточная (вандер-ваальсова) связь. Дисперсионные силы. /Пр/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.9	Металлическая связь. Зонная энергетическая структура кристалла. Переход от металлической к ковалентной связи. Остаточная (вандер-ваальсова) связь. Дисперсионные силы. /Ср/	4	9	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.10	Способы описания и изображения атомного строения кристалла. Пространственная решетка. 14 типов ячеек Браво. Пространственные группы симметрии Е. С. Федорова. /Лек/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.11	Способы описания и изображения атомного строения кристалла. Пространственная решетка. 14 типов ячеек Браво. Пространственные группы симметрии Е. С. Федорова. /Пр/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.12	Способы описания и изображения атомного строения кристалла. Пространственная решетка. 14 типов ячеек Браво. Пространственные группы симметрии Е. С. Федорова. /Ср/	4	14	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.13	Структурный тип. Изоструктурность, антиизоструктурность, изотипность, гомеотипность. Структурный класс. /Лек/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.14	Структурный тип. Изоструктурность, антиизоструктурность, изотипность, гомеотипность. Структурный класс. /Пр/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	

1.15	Структурный тип. Изоструктурность, антиизоструктурность, изотипность, гомеотипность. Структурный класс. /Ср/	4	12	ПК-2	Л1.1 Л1.2Л2.1 Л2.2 Э1	0	
1.16	Морфотропия и структурная гомология. Критерии устойчивости структурного типа. Правила Магнуса-Гольдшмидта, Полинга и др (ионные кристаллы). Правила Гома-Розери, Гримма-Зоммерфельда, Пирсона и др (ковалентные кристаллы). /Лек/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	
1.17	Морфотропия и структурная гомология. Критерии устойчивости структурного типа. Правила Магнуса-Гольдшмидта, Полинга и др (ионные кристаллы). Правила Гома-Розери, Гримма-Зоммерфельда, Пирсона и др (ковалентные кристаллы). /Пр/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	
1.18	Морфотропия и структурная гомология. Критерии устойчивости структурного типа. Правила Магнуса-Гольдшмидта, Полинга и др (ионные кристаллы). Правила Гома-Розери, Гримма-Зоммерфельда, Пирсона и др (ковалентные кристаллы). /Ср/	4	12	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	
1.19	Полиморфизм. Изменение симметрии при изменении температуры и давления. Координационные правила полиморфизма. /Лек/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	
1.20	Полиморфизм. Изменение симметрии при изменении температуры и давления. Координационные правила полиморфизма. /Пр/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	
1.21	Полиморфизм. Изменение симметрии при изменении температуры и давления. Координационные правила полиморфизма. /Ср/	4	12	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	
1.22	Политипизм. Связь термодинамических свойств и структурами полиморфных модификаций. /Лек/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	
1.23	Политипизм. Связь термодинамических свойств и структурами полиморфных модификаций. /Пр/	4	1	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	
1.24	Политипизм. Связь термодинамических свойств и структурами полиморфных модификаций. /Ср/	4	12	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	
1.25	Изоморфизм. Основные физико- химические и термодинамические принципы теории изоморфизма. /Ср/	4	12	ПК-2	Л1.1 Л1.2Л2.1 Л2.3 Э1	0	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Контрольные вопросы и задания

- 1. Задачи современной кристаллохимии
- 2. Квантово-механическая модель атома. В чем заключаются различия между моделью атома Бора и квантово-механической моделью атома? Какое фи-зическое явление впервые прямо доказало, что волновой характер действительно присущ электрону? Как вы понимаете, что такое электронное облако? Что озна-чает термин "боровский радиус"?
- 3. Если электронное облако в соответствии с радиальным распределением простирается от ядра до бесконечности, то почему все-таки можно сравнивать размеры атомов и измерять межатомные расстояния, например, в молекулах или кристаллах?
- 4. В чем заключается правило Хунда и какую роль оно играет при опреде-лении электронных конфигураций

атомов? Каково физическое обоснование этого правила?

- 5. Многоэлектронные атомы. В чем заключается правило Клечковского? Как оно связано с энергией электронов в атоме? Что означает термин "проникно-вение" и почему это важно для понимания относительных энергий s-, p-, d-, и f- электронов с одним и тем же квантовым числом?
- 6. Орбитальные радиусы атомов и ионов.
- 7. Валентное состояние атомов. Как вы понимаете, что такое основное и что такое возбужденное состояние атома?
- 8. Объясните общую закономерность изменения потенциалов ионизации у элементов одной группы периодической системы, учитывая размеры их атомов и эффективные заряды ядра.
- 9. Орбитальные электроотрицательности. Поляризуемость атомов и ионов.
- 10. Кислотно-основные свойства атомов и ионов. Чем отличаются льюисовы кислоты и основания от кислот и оснований Бренстеда, а также от кислот и осно-ваний Аррениуса?
- 11. Классификация твердых тел. Ионная модель решетки.
- 12. Энергия кристаллической решетки. Химическая связь.
- 13. Ковалентная связь. Теория направленных валентностей.
- 14. Методы валентных связей и молекулярных орбиталей.
- 15. Гибридизация связей. Почему использование гибридных орбиталей предпочтительнее, чем использование обычных атомных орбиталей при образо-вании связей? Проиллюстрируйте ответ примерами.
- 16. Какие три важнейшие типа гибридных орбиталей могут образовать атомы, имеющие только s- и p- орбитали в валентных оболочках? Опишите мо-лекулярную геометрию, соответствующую каждому случаю.
- 17. Разновидности ковалентной связи и ее свойства. Степень ионности связи. Правила Фаянса.
- 18. Металлическая связь. Зонная энергетическая структура кристалла.
- 19. Эффективные радиусы атомов и ионов и их соотношения. Теория Л. Полинга для оценки соотношения радиусов пары катион-анион.
- 20. Эффективные заряды атомов в кристалле.
- 21. Перечислите основные элементы симметрии и объясните их физиче-ский смысл. Приведите примеры зеркальной и поворотной симметрии в природе.
- 22. Разъясните различия между ближним и дальним порядком в твердых телах. Опишите однослойную плотную упаковку сферических атомов или ионов. Нарисуйте, какими двумя способами можно осуществить наложения слоев друг на друга.
- 23. Каким образом отношение радиусов катионов и анионов связано с типом структуры ионного кристалла? Что такое координационное число иона?
- 24. Определите порядок оси симметрии, проходящей через центр цилин-дра к его образующей и порядок оси, проходящей через тот же цилиндр парал-лельно образующей.
- 25. Нарисуйте, какими двумя способами можно осуществить наложение друг на друга трех одинаковых слоев в плотной упаковке. Какое координацион-ное число имеет каждый атом в плотной гексагональной упаковке?
- 26. Почему обычно рассматривают координационные числа катионов, а не анионов? Зная радиусы Mg2+ и F-, решите, возможно ли существование фтори-да магния в виде структуры с координационными числами 4, 6 или 8 для иона Mg2+.
- 27. Изобразите графически в кубической решетке кристаллографические плоскости (211), (002), (00), (001/2), (101), (00).
- 28. Полиморфизм. Политипия.
- 29. Изоморфизм.
- 30. Морфотропия.
- 31. Критерии устойчивости ионных кристаллов. Теория Л. Полинга и Магнуса-Гольдшмидта.
- 32. Критерии устойчивости ковалентных кристаллов. Теория Юма-Розери, Грима-Зомерфельда и Л. Полинга.

5.2. Темы письменных работ

Самостоятельная работа

5.3. Фонд оценочных средств

Критерии оценки знаний студентов при проведении тестирования . Тестовое задание по дисциплине содержит 25 вопросов.

- Оценка «отлично» выставляется при условии правильного ответа студента не менее чем 80% тестовых заданий;
- Оценка «хорошо» выставляется при условии правильного ответа студента не менее чем 60% тестовых заданий;
- Оценка «удовлетворительно» выставляется при условии правильного ответа студента не менее 45%.

Критерии оценки знаний студентов при проведении промежугочной аттестации Экзаменационный билет содержит 3 вопроса.

- Оценка «отлично» выставляется при условии правильного и полного ответа студента на все три вопроса, а также на все дополнительные вопросы;
- Оценка «хорошо» выставляется при условии правильного ответа студента на все три вопроса, но при этом ответы неполные или в них допущены неточности; даны ответы более чем на 50% дополнительных вопросов;
- Оценка «удовлетворительно» выставляется при условии неполного ответа студента на все три вопроса либо дан полный ответ на два вопроса, на третий вопрос ответ отсутствует; даны ответы менее чем на 50% дополнительных вопросов.

5.4. Перечень видов оценочных средств

Оценочные средства по категории "ЗНАТЬ": контрольные вопросы, тесты, экзаменационные билеты.

Оценочные средства по категории "УМЕТЬ": расчетные задания, тесты, экзаменационные билеты.

Оценочные средства по категории "ВЛАДЕТЬ": расчетные задания.

	6. УЧЕБНО-МЕТОДИ	ЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИ	СЦИПЛИНЫ (МОДУ	ЛЯ)			
		6.1. Рекомендуемая литература					
		6.1.1. Основная литература					
	Авторы, составители Заглавие, размещение Издательство, год						
Л1.1	Егоров-Тисменко Ю. К.	Кристаллография и кристаллохимия: учебник для вузов	М.: Книжный дом "Университет", 2005	1			
Л1.2	Личман Н.В.	Кристаллохимия: учеб. пособие	Норильск: НИИ, 2000	1			
	<u>l</u>	6.1.2. Дополнительная литература	I				
	Авторы, составители	Заглавие, размещение	Издательство, год	Колич-во			
Л2.1	Суворов А.В., Никольский А.Б.	Общая химия: учебник для вузов	СПб.: Химиздат, 2000	3			
Л2.2	Бокий Г.Б.	Кристаллохимия	М.: Наука, 1971	1			
Л2.3	Кребс Г.	Основы кристаллохимии неоргаанических соединений	М.: Мир, 1971	2			
	=	 ень ресурсов информационно-телекоммуникационной сет	 ги "Интернет"				
Э1	Электронный каталог 3	BГУ http://biblio.norvuz.ru					
		6.3.1 Перечень программного обеспечения					
	` 1	лицензии 62693665 от 19.11.2013)					
6.3.1.2	MS Office Standard 20	13 (Номер лицензии 62693665 от 19.11.2013)					
6.3.1.3	MS Office Standard 20	07 (Номер лицензии 62693665 от 19.11.2013)					
6.3.1.4	MS Windows XP (Hom	ер лицензии 62693665 от 19.11.2013)					
6.3.1.5	ABBYY FineReader 10	0 (Номер лицензии 94965 от 25.08.2010)					
		6.3.2 Перечень информационных справочных систем					
	_	ечная система www.iprbookshop.ru;					
6.3.2.2	2 ЭБ НГИИ						

	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
7.1	Учебные аудитории для проведения лекций;
7.2	Учебные аудитории для практических (семинарских) занятий;
	Учебная аудитория для групповых и индивидуальных консультаций, самостоятельной работы; текущего контроля и промежуточной аттестации;
7.4	Учебные аудитории для проведения лабораторных работ

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Для успешного освоения учебного материала студенту необходимо ясно понимать значимость и место дисциплины в его профессиональной подготовке и активно участвовать во всех видах учебного процесса. По дисциплине учебным планом предусмотрена контактная и самостоятельная работа обучающегося.

Контактная работа включает лекционные, практические и лабораторные занятия, коллективные и индивидуальные консультации.

На лекционных занятиях необходимо внимательно слушать преподавателя, подробно и аккуратно вести конспект, который дополняется и корректируется в процессе самостоятельной проработки материала. Практические занятия предусмотрены для формирования умений и навыков применения теории на практике для решения профессиональных задач.

Перед лабораторным занятием студенту необходимо проработать предыдущий теоретический курс, используя конспект лекций и рекомендуемую литературу, а также ознакомиться с ходом работы в соответствии с источниками.

На практических занятиях студентами выполнятся тематические и расчетные задания по темам курса. Студенту необходимо активно участвовать в учебном процессе, при необходимости задавать вопросы преподавателю.

Текущий контроль проводится в виде: защиты практических заданий и отчетов по лабораторным работам. Для реализации самостоятельной работы созданы следующие условия и предпосылки:

- 1. студенты обеспечены информационными ресурсами в библиотеке НГИИ (учебниками, учебными пособиями, банком индивидуальных заданий);
- 2. студенты обеспечены информационными ресурсами в локальной сети НГИИ (в электронном виде выставлено методическое обеспечение дисциплины);
- 3. организованы еженедельные консультации.

Промежуточная аттестация по дисциплине. Подготовка к промежуточной аттестации включает проработку теоретического материала, ответы на контрольные вопросы. Вопросы, возникающие во время подготовки, можно выяснить во время консультации.

Для получения допуска студент должен выполнить, оформить и сдать все виды работ, предусмотренные тематическим планом учебной программы дисциплины.

Допуск выставляется только в случае положительной аттестации по всем контрольным точкам и после выполнения студентом всех видов самостоятельной и аудиторной работы.