Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Игнатенко Виталий Иванови Министерство науки и высшего образования РФ Должность: Проректор по образовательной деятельности и молодежной политике дата подписания Федеральное государственное бюджет ное образовательное учреждение высшего образования Уникальный программный ключ:

а49ае343аf5448d45d7e3e1e499659da8109ba78 «Заполярный государственный университет им. Н. М. Федоровского» 3ГУ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Триботехника металлургических машин и агрегатов»

Факультет: Горно-технологический факультет	
Направление подготовки: <u>15.04.02 Технологические машины и</u>	<u>оборудование</u>
Направленность (профиль): <u>Машины и агрегаты металлурги</u>	ческой промышленности
Уровень образования: <u>Магистратура</u>	
Кафедра « <i>Технологические машины и оборудование</i> »	
Разработчик ФОС:	
Доцент, канд. техн. наук	Федоров А.А.
(должность, степень, ученое звание) (подпись)	(ФИО)
Оценочные материалы по дисциплине рассмотрены и одобрены $N_2 2$ от « 07 » мая 2025 г.	на заседании кафедры, протокол
Заведующий кафедрой Л.В. Крупнов	

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения		
Общепрофессиональные			
ОПК-4 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	ОПК-4.1 Определяет состав и структуру методических и нормативных документов при реализации разработанных проектов и программ, направленных на создание и эксплуатацию узлов и деталей машин ОПК-4.2 Разрабатывает методические и нормативные документы при реализации разработанных проектов и программ, направленных на создание и эксплуатацию узлов и деталей машин		
ОПК-12 Способен оценивать техническое состояние, выявлять и устранять неисправности в работе металлургического оборудования с гидравлическим, пневматическим и электромеханическим приводами, задействованными в технологическом процессе	ОПК-12.1 Применяет и оценивает современные методы исследования технологических машин и оборудования ОПК-12.2 Использует современные методы исследования работоспособности технологических машин и оборудования, представлять результаты исследований		

Таблица 2. Паспорт фонда оценочных средств

Контролируемые	Формируемая	Наименование	Форма
разделы (темы)	компетенция	оценочного	оценивания
дисциплины		средства	
Введение. Основные термины и	ОПК-4,	Тестовые задания	Письменно
определения.	ОПК-12		
Природа и виды трения. Трение	ОПК-4,	Тестовые задания	Письменно
скольжение при отсутствии смазки	ОПК-12		
Методы повышения износостойкости	ОПК-4,	Тестовые задания	Письменно
деталей. Материалы	ОПК-12		
триботехнического назначения.			
Система подачи жидкой смазки.	ОПК-4,	Тестовые задания	Письменно
Циркуляционная система подачи	ОПК-12		
жидкой смазки.			

Пластинчатые смазки и требования к	ОПК-4,	Тестовые задания	Письменно
ним. Свойства пластинчатых смазок.	ОПК-12		

1. Перечень контрольно-оценочных средств (КОС)

Для определения качества освоения обучающимися учебного материала по дисциплине используются следующие контрольно-оценочные средства текущего контроля успеваемости, промежуточной аттестации обучающихся:

Таблица 3. Перечень контрольно-оценочных средств

	Наименование	Сроки	Шкала	Критерии		
	оценочного средства	выполнения	оценивания	оценивания		
1.	Текущий контроль качества					
			Достигнут/ не			
	Тестовые задания	5 семестр	достигнут пороговый			
	тестовые задания	Эссместр	уровень освоения			
		компетенции				
2.	Промежуточная аттестация «зачет»					
	Вопросы к зачету	5 семестр	Освоил/ не освоил	Зачтено/ не зачтено		
			компетенцию			

Критерии промежуточной аттестации

Критерии выставления аттестации «зачтено», «не зачтено»:

- «Зачтено» выставляется обучающемуся, если он показал достаточно прочные знания основных положений учебной дисциплины, умение самостоятельно решать конкретные практические задачи, предусмотренные рабочей программой, ориентироваться в рекомендованной справочной литературе, умеет правильно оценить полученные результаты.
- «Не зачтено» выставляется обучающемуся, если при ответе выявились существенные пробелы в знаниях основных положений учебной дисциплины, неумение с помощью преподавателя получить правильное решение конкретной практической задачи из числа предусмотренных рабочей программой учебной дисциплины.
- 3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

3.1 Задания для текущего контроля успеваемости

1) Назовите технологические методы повышения износостойкости деталей химикотермической обработкой,

Укажите два верных ответа:

- а) оксидирование;
- б) лазерное упрочнение;
- в) цианирование;
- г) азотирование.
- 2) Назовите технологические методы повышения износостойкости деталей термической обработкой:
 - а) сульфидирование;

- б) лазерное упрочнение;
- в) никилирование;
- г) высокочастотная закалка.
- 3) Назовите технологические методы повышения износостойкости деталей химической обработкой,

Укажите два верных ответа:

- а) оксидирование;
- б) фосфатирование;
- в) цианирование;
- г) азотирование.
- 4) Назовите технологические методы повышения износостойкости деталей поверхностным пластическим деформированием,

Укажите два верных ответа:

- а) графитирование;
- б) фрикционное латунирование;
- в) дробеструйная обработка;
- г) алмазное выглаживание.
- 5) Назовите технологические методы повышения износостойкости деталей гальваническими покрытиями,

Укажите два верных ответа:

- а) хромирование;
- б) железнение;
- в) сульфидирование;
- г) силицирование.
- 6) Назовите технологические методы повышения износостойкости деталей гальваническими покрытиями:
 - а) цианирование;
 - б) никилирование;
 - в) борирование;
 - г) фосфотирование.
 - 7) Назовите технологические методы повышения износостойкости деталей наплавкой, Укажите два верных ответа:
 - а) лазерное упрочнение;
 - б) гидрополирование;
 - в) электрошлаковая;
 - г) вибродуговая.
- 8) Назовите группы, на которые могут быть разделены все встречающиеся разрушения и износы металлургического оборудования,

Укажите два верных ответа:

- а) естественные;
- б) искусственные;
- в) аварийные;
- г) случайные.
- 9) Естественные разрушения и износы деталей машин являются следствием:
- а) нарушения правил технической эксплуатации;
- б) длительного воздействия различных факторов;
- в) низким качеством проектирования;
- г) низким качеством изготовления.
- 10) Аварийные разрушения и износы деталей машин являются следствием:
 - а) нарушения правил технической эксплуатации;
 - б) длительного воздействия различных факторов;
 - в) низким качеством проектирования;

- г) низким качеством изготовления.
- 11) Какой вид трения происходит при отсутствии смазочного материала и определяется шероховатостью поверхностей:
 - a) cyxoe;
 - б) граничное;
 - в) жидкостное;
 - г) полужидкостное.
- 12) Как называется трение, когда контактирующие поверхности разделены слоем смазочного материала не менее 0,1 мкм:
 - a) cyxoe;
 - б) граничное;
 - в) жидкостное;
 - г) полужидкостное.
- 13) Как называется трение, когда контактирующие поверхности разделены гарантированным слоем смазочного материала при взаимном перемещении:
 - a) cyxoe;
 - б) граничное;
 - в) жидкостное;
 - г) полужидкостное.
- 14) Смазка, при которой полное разделение поверхностей трения осуществляется в результате давления самовозникающего в слое жидкости, при относительном движении поверхностей, называется:
 - а) гидродинамической;
 - б) гидростатической;
 - в) полужидкостной;
 - г) жидкостной.
- 15) Смазка, при которой полное разделение поверхностей трения деталей, находящихся в относительном движении или иное, осуществляется в результате поступления жидкости под внешним давлением в зазор между поверхностями, называется:
 - а) гидродинамической;
 - б) гидростатической;
 - в) полужидкостной;
 - г) жидкостной.
- 16) Пределы изменения коэффициента трения при трении без смазочного материала(«сухое трение»):
 - a) f > 0.1;
 - б) f=0,005÷0,0005;
 - B) $f=0,1\div0,005$.
- 17) Пределы изменения коэффициента трения при трении без смазочного материала(«сухое трение»):
 - Γ) f >0,1;
 - д) f=0,005÷0,0005;
 - e) $f=0,1\div0,005$.
 - 18) Пределы изменения коэффициента трения при жидкостной смазке:
 - a) f > 0,1;
 - 6) $f=0.1\div0.005$;
 - B) $f=0.005\div0.0005$.
 - 19) Условия применения жидких смазочных материалов:
 - а) в узлах трения, в которых трудно обеспечить надежное уплотнение;
 - б) в тяжело нагруженных подшипниках качения и скольжения;
 - в) в узлах жидкостного и полужидкостного трения при условии их надежного уплотнения;
 - г) при высоких окружных скоростях.

20)	Vелория	ппиманания	ппостинни іх	CM920IIII IV	материалов:
4U)	условия	применения	пластичных	смазочных	материалов:

- а) в узлах трения, в которых трудно обеспечить надежное уплотнение;
- б) в тяжело нагруженных подшипниках качения и скольжения;
- в) в узлах жидкостного и полужидкостного трения при условии их надежного уплотнения;
- г) при высоких окружных скоростях.

21) Динамическая вязкость (µ) в системе СИ измеряется в:

- a) Па.с;
- $6)\frac{M^2}{c}$;
- B) $\frac{K\Gamma}{M^3}$

22) Кинематическая вязкость в системе СИ измеряется в:

- a) ∏a.c;
- $\delta \frac{M^2}{c}$;
- B) $\frac{K\Gamma}{M^2}$

23) Отношение времени вытекания 200 мл масла через стандартный капилляр при температуре испытания, равной 50^{0} С или 10^{0} С по времени вытекания такого же объема воды при 20^{0} С это:

- а) кинематическая вязкость;
- б) динамическая вязкость;
- в) условная вязкость;
- г) индекс вязкости ИВ.

24) Сила, которая необходима для перемещения слоя масла площадью в 1м² со скоростью 1 м/с относительно другого слоя, расположенного на расстоянии 1 м от первого, является:

- а) кинематической вязкостью;
- б) динамической вязкостью;
- в) условной вязкостью ВУ;
- г) индексом вязкости ИВ.

25) Отношение динамической вязкости к плотности масла при данной температуре, является:

- а) кинематической вязкостью;
- б) динамической вязкостью;
- в) условной вязкостью ВУ;
- г) индексом вязкости ИВ.

26) Отношение изменения кинематической вязкости при нагреве масла от 0^{0} С до 100^{0} С к кинематической вязкости при 50^{0} С, является:

- а) индексом вязкости ИВ;
- б) условной вязкостью ВУ;
- в) температурным коэффициентом вязкости ТКВ;
- г) динамической вязкостью.

27) Температура, при которой пары масла образуют с окружающим воздухов горючую смесь, которая загорается при поднесении к ней пламени, называется:

- а) температурой воспламенения Твос;
- б) температурой вспышки Твс;
- в) температурой застывания Тзас.

28) Температура, при которой масло загорается и горит не менее 5с, называется:

- а) температурой воспламенения;
- б) температурой вспышки Твс;
- в) температурой застывания Тзас.

29) Температура, ниже которой масло утрачивает текучесть и приобретает свойство
пластической массы, называется:
а) температурой воспламенения;
б) температурой вспышки;
в) температурой застывания Тзас.
30) Присадки к смазочному материалу для понижения температуры застывания это:
а) депрессорные;
б) антифрикционные;
в) противоизносные;
г) вязкостные.
31) Присадки к смазочному материалу для снижения или стабилизации
коэффициента трения, это:
а) депрессорные;
б) антифрикционные;
в) противоизносные;
г) вязкостные.
32) Присадки к смазочному материалу для предотвращения или ослабления заедания при
высоких контактных нагрузках и температурах, это:
а) депрессорные;
б) антифрикционные;
в) противоизносные;
г) противозадирные.
33) Присадки к смазочному материалу для снижения износа поверхности при умеренных
контактных нагрузках и температурах, это:
а) антифрикционные;
б) противоизносные;
в) противозадирные;
г) вязкостные.
34) Присадки к смазочному материалу для повышения вязкости и улучшения вязкостно-
температурных свойств масел, это:
а) депрессорные;
б) вязкостные;
в) противозадирные;
г) антифрикционные.
35) Сколько символов входит в обозначение индустриальных масел:
a) 3;
б) 4;
в) 5;
r) 6.
36) Область применения индустриальных масел в обозначении, это:
Укажите два верных ответа.
a) Л;
δ) Γ;
в) A;
r) B.
37) Эксплуатационные свойства индустриальных масел в обозначении, это:
Укажите два верных ответа.
a) Л;
a) π; 6) Γ;
о) I , в) A;
r) B.
38) Область применения индустриальных масел в обозначении, это:
эо) область применения индустриальных массл в обозначений, это.

a) H;
б) Т;
в) С;
r) D.
39) Эксплуатационные свойства индустриальных масел в обозначении, это:
Укажите два верных ответа.
a) H;
б) Т;
в) С;
r) D.
40) Область применения индустриальных масел в обозначении, это:
Укажите два верных ответа.
a) H;
δ) Γ;
в) Д;
r) E.
41) Эксплуатационные свойства индустриальных масел в обозначении, это:
Укажите два верных ответа.
a) H;
δ) Γ;
в) D;
r) E.
42) Напряжение, при котором разрушается структурный каркас, образованный
загустителем, и происходит переход к вязкому течению пластичного смазанного
материала, называется:
а) вязкостью;
б) пределом прочности на сдвиг;
в) пенетрацией;
г) термоупрочнением.
43) Свойство пластичного смазочного материала оказывать сопротивление
относительному перемещению его слоев под действием приложенной силы, называется:
а) вязкостью;
б) пределом прочности на сдвиг (Тсдв);
в) пенетрацией;
г) термоупрочнением.
44) Косвенный (условный) показатель вязкости пластичного смазочного материала,
который оценивается глубиной проникновения (измеряемый в десятых долях миллиметра) в
испытываемый материал специального конуса массой 150 г за 5с при температуре 25°C,
называется:
а) вязкостью (μ);
б) пределом прочности на сдвиг (Тсдв);
в) пенетрацией;
г) термоупрочнением.
45) Повышение предела прочности пластичного смазочного материала после его нагрева
ниже предела плавления, называется:
а) вязкостью(µ);
б) пределом прочности на сдвиг (Тсдв);
в) пенетрацией;
в) пенстрацией, г) термоупрочнением.
46) Вязкость, определенная при заданных значениях скорости деформирования и
температуры, называется:
remirepart pois napolication.

Укажите два верных ответа.

- а) эффективной вязкостью;
- б) механической стабильностью;
- в) термоупрочнением;
- г) коллоидной стабильностью.
- 47) Способность пластичного смазочного материала сохранять объемно-механические свойства после «деформации» и последующего «отдыха», характеризует:
 - а) механическая стабильность;
 - б) термоупрочнение;
 - в) коллоидная стабильность;
 - г) температура каплепадения (Ткап).
- 48) Способность пластичного смазочного материала удерживать в своей структуре жидкое масло и, следовательно, его долговечность при работе и хранении, характеризует:
 - а) механическая стабильность;
 - б) термоупрочнение;
 - в) коллоидная стабильность;
 - Γ) температура каплепадения $T_{\text{кап}}$.
- 49) Температура, при которой падает первая капля пластичного смазочного материала из термометра Уббслода при проведении испытаний, называется:
 - а) пенетрация;
 - б) термоупрочнение;
 - в) коллоидная стабильность;
 - Γ) температура каплепадения $T_{\text{кап}}$.
- 50) Стабильность, которая характеризует способность пластичного смазочного материала к окислению на воздухе в тонком слое при нагревании до 120^{0} С в течение 10 часов, называется:
 - а) механическая стабильность;
 - б) коллоидная стабильность;
 - в) температура каплепадения Ткап;
 - г) химическая стабильность.
- 51) Состояние системы, при котором она соответствует всем требованиям нормативнотехнической и(или) конструкторской документации, называется:
 - а) исправным;
 - б) работоспособным;
 - в) предельным.
- 52) Состояние системы, при котором значения всех параметров, характеризующих способность системы выполнять заданные функции, соответствующие требованиям нормативно-технической и(или) конструкторской документации, называется:
 - а) исправным;
 - б) работоспособным;
 - в) предельным.
- 53) Состояние системы, при котором её дальнейшее применение по назначению недопустимо или нецелесообразно, либо восстановление её неисправного или работоспособного состояния невозможно или нецелесообразно, называется:
 - а) исправным;
 - б) работоспособным;
 - в) предельным.
- 54) Структура поверхностного слоя материала детали, формирующаяся в результате механической обработки может быть представлена в виде пяти слоев, первый из них:
 - а) слой окисла, имеющий повышенную твердость и износостойкость;

- б) адсорбированный слой, состоящий из пленки влаги, газов и загрязнений;
- в) более глубокий слой с искаженной кристаллической решеткой;
- г) слой с сильно деформированной кристаллической решеткой.

55) Структура поверхностного слоя материала детали, формирующаяся в результате механической обработки, может быть представлена в виде пяти слоев, второй из них:

- а) слой окисла, имеющий повышенную твердость и износостойкость;
- б) адсорбированный слой, состоящий из пленки влаги, газов и загрязнений;
- в) слой с сильно деформированной кристаллической решеткой;
- г) более глубокий слой с искаженной кристаллической решеткой.

56. Структура поверхностного слоя материала детали, формирующаяся в результате механической обработки, может быть представлена в виде пяти слоев, третий из них:

- а) слой окисла, имеющий повышенную твердость и износостойкость;
- б) адсорбированный слой, состоящий из пленки влаги, газов и загрязнений;
- в) слой с сильно деформированной кристаллической решеткой;
- г) более глубокий слой с искаженной кристаллической решеткой.

57. Структура поверхностного слоя материала детали, формирующаяся в результате механической обработки, может быть представлена в виде пяти слоев, четвертый из них:

- а) слой окисла, имеющий повышенную твердость и износостойкость;
- б) адсорбированный слой, состоящий из пленки влаги, газов и загрязнений;
- в) слой с сильно деформированной кристаллической решеткой;
- г) более глубокий слой с искаженной кристаллической решеткой.

58. Назовите нецентрализованные проточные системы жидкой смазки:

Укажите два верных ответа.

- а) кольцевая смазка;
- б) фитильная смазка;
- в) буксовая смазка;
- г) картерная смазка.

59. Назовите нецентрализованные проточные системы жидкой смазки:

- а) капельная смазка;
- б) самотечная смазка;
- в) смазка под давлением;
- г) смазка распылением.

60. Назовите нецентрализованные циркуляционные системы жидкой смазки:

- а) ручная смазка;
- б) самотечная смазка;
- в) распыление жидкого смазочного материала;
- г) буксовая.

61. Назовите нецентрализованные циркуляционные системы жидкой смазки:

Укажите два верных ответа.

- а) фитильная смазка;
- б) картерная смазка;
- в) кольцевая смазка;
- г) капельная смазка.

62. Назовите централизованные системы пластичной смазки:

- а) концевого типа;
- б) кольцевого типа;
- в) централизованные циркуляционные системы.

63. Трение двух тел при микросмещениях до перехода к относительному движению, это:

- а) трение движения;
- б) трение скольжения;
- в) трение качения;
- г) трения покоя.

- 64. Трение двух тел, находящихся в относительном движении, это:
 - а) трение скольжения;
 - б) трение качения;
 - в) трения покоя;
 - г) трение движения.
- 65. Трение движения, при котором скорости тел в точке касания различны по величине или направлению, или только по величине, или только по направлению, это:
 - а) внешнее трение;
 - б) трение движения;
 - в) трение скольжения;
 - г) трение качения.
- 66. Трение движения двух твердых тел, при котором их скорости в точках касания одинаковы по величине и направлению, это:
 - а) внешнее трение;
 - б) трение движения;
 - в) трение скольжения;
 - г) трение качения.
- 67. В соответствии с основными положениями молекулярно-механической теории трения при относительном перемещении рабочих поверхностей наблюдаются одновременно взаимодействия:

Укажите два верных ответа.

- а) молекулярное;
- б) химическое;
- в) электрическое;
- г) механическое.
- 68. Сколько видов фрикционного взаимодействия различают в зависимости от соотношения механической и молекулярной составляющих трения:
 - a) 3;
 - б) 4;
 - в) 5;
 - r) 6.
- 69. В соответствии с молекулярно-механической теорией трения назовите виды фрикционного взаимодействия:

Укажите два верных ответа.

- а) упругое оттеснение материала;
- б) скольжение поверхностей
- в) пластическое оттеснение материала;
- г) качение поверхностей;
- 70. В соответствии с молекулярно-механической теорией трения назовите виды фрикционного взаимодействия:

Укажите два верных ответа.

- а) схватывание окисных пленок, покрывающих трущиеся поверхности, и их разрушение;
- б) схватывание поверхностей в результате молекулярного взаимодействия, сопровождающиеся глубинным вырыванием материала;
 - в) оплавление поверхностей;
 - г) наклеп поверхностей.
 - 71. Градиент механических свойств имеет положительное значение и это означает, что:
- а) вектор, характеризующий изменение механических свойств материала детали по нормам к поверхности трения направлен в глубь детали;
- б) вектор, характеризующий изменение механических свойств материала детали по нормали к поверхности трения направлен к поверхности трения;
 - в) направлен по границам зёрен кристаллической решетки.

72. Назовите основные факторы, влияющие на коэффициент трения:

Укажите два верных ответа.

- а) нормальное давление на поверхности трения;
- б) азотирование;
- в) скорость относительного перемещения поверхностей;
- г) модуль упругости;
- д) химический состав материала деталей.

73. Назовите основные факторы, влияющие на коэффициент трения:

Укажите два верных ответа.

- а) температура поверхности трения;
- б) относительная деформация деталей;
- в) количество смазочного материала;
- г) вязкость смазочного материала;
- д) цианирование.

74. Назовите основные Факторы, влияющие на коэффициент трения:

Укажите два верных ответа.

- а) толщина окисной плёнки;
- б) цементация;
- в) твердость поверхности трения;
- г) высота неровностей;
- д) структура металла деталей.

75. Изменение, возникающие в результате механических воздействий на поверхность трении, называется:

- а) механическим изнашиванием;
- б) коррозионно-механическим изнашиванием;
- в) электроэрозионным изнашиванием;
- г) окислительным изнашиванием.

Правильные ответы

Вопрос	Ответ
1	Β, Γ
2	Γ
3	А, Б
4	Β, Γ
5	А, Б
6	Б
7	Β, Γ
8	A, B
9	Б
10	A
11	A
12	Б
13	В
14	A
15	Б
16	A

17	Г
17	Γ
18	В
19	В
20	A
21	A
22	Б
23	В
24	Б
25	A
26	В
27	Б
28	A
29	В
30	A
31	Б
32	Γ
33	Б
34	Б
35	Б
36	А, Б
37	Β, Γ
38	А, Б
39	Β, Γ
40	А, Б
41	Β, Γ
42	Б
43	A
44	В
45	Γ
46	A
47	A
48	В
49	Γ
50	Γ
51	A
52	Б
53	В
54	Б
55	A
56	В
57	Γ
58	Б, В
59	A
l .	1

60	Б
61	Б, В
62	A
63	Γ
64	Γ
65	В
66	Γ
67	Α, Γ
68	В
69	A, B
70	А, Б
71	A
72	A, B
73	Β, Γ
74	Α, Γ
75	A

Задания практических работ

Практическая работа № 1. По теме: «Определение шероховатости поверхности детали». Задание: изучить основные методы определения шероховатости.

Практическая работа № 2. По теме: «Определение контактной прочности деталей в парах трения». Задание: изучить основные методы определения контактной прочности.

Практическая работа № 3. По теме: «Определение площади контакта деталей машин при трении». Задание: изучить методы определения контактной площади.

Практическая работа № 4. По теме: «Определение параметров изнашивания и разрушения рабочих поверхностей деталей машин.».

Задание: изучить методы определения параметров изнашивания и разрушения поверхностей. Практическая работа № 5. По теме: «Определение параметров изнашивания поверхностей пар трения».

Задание: изучить методы определения параметров изнашивания поверхностей пар трения.

3.2 Задания для промежуточной аттестации

Контрольные вопросы к зачету:

- 1. Роль трения в технике.
- 2. Факторы и поверхностные явления твёрдых тел, оказывающие влияние на трибологические процессы.
 - 3. Геометрические характеристики поверхностей.
 - 4. Площади контакта и поверхности контакта.
 - 5. Тепловые эффекты при трении.
 - 6. Природа и виды трения.
 - 7. Трение скольжение при отсутствии смазки.
 - 8. Трение при граничной смазке.
 - 9. Жидкостное трение.

- 10. Трение качения.
- 11. Изнашивание трущихся тел.
- 12. Характеристики и виды изнашивания.
- 13. Методы повышения износостойкости деталей.
- 14. Материалы триботехнического назначения.
- 15. Назначение смазки.
- 16. Типы смазочных материалов.
- 17. Требования к минеральным маслам.
- 18. Характеристики минеральных масел.
- 19. Система подачи жидкой смазки.
- 20. Циркуляционная система подачи жидкой смазки.
- 21. Маслоблок.
- 22. Фильтр для тонкой очистки масла.
- 23. Демпфер.
- 24. Расчёт системы циркуляционной смазки.
- 25. Смазка масляным туманом.
- 26. Пластинчатые смазки и требования к ним.
- 27. Свойства пластинчатых смазок.
- 28. Централизованная система пластинчатой смазки.
- 29. Расчёт системы пластинчатой смазки.
- 30. Монтаж системы смазки.
- 31. Проверка станции на герметичность.
- 32. Регенерация и очистка масла.
- 33. Карта смазки, таблица смазки.