Документ подписан просминистерствоинауки и высшего образования Российской Федерации

Информация о владельце:

Федеральное государственное бюджетное образовательное учреждение Фило: Игнатенко Виталий Иванович

Должность: Проректор по образовательной деятельности и молодежной политке Дата подписания: 03.07.2024 06 Заполярный государственный университет им. Н.М. Федоровского»

Уникальный программный ключ:

(3ГУ)

a49ae343af5448d45d7e3e1e499659da8109ba78

УТВЕРЖДАЮ	
Проректор по О	ОД и МП
	Игнатенко В.И.

Моделирование электротехнологических процессов

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Электроэнергетики и автоматики

Учебный план 13.03.02 бак оч-заоч ЭЭ-2024.plx

Направление подготовки: Электроэнергетика и электротехника

зачеты 8

Квалификация бакалавр

Форма обучения очно-заочная

Общая трудоемкость **63ET**

Часов по учебному плану 216 Виды контроля в семестрах:

в том числе:

24 аудиторные занятия самостоятельная работа 188 4 часов на контроль

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	8 (4.2)		Итого	
Недель	1	16		
Вид занятий	УП	РΠ	УП	РΠ
Лекции	16	16	16	16
Практические	8	8	8	8
Итого ауд.	24	24	24	24
Контактная работа	24	24	24	24
Сам. работа	188	188	188	188
Часы на контроль	4	4	4	4
Итого	216	216	216	216

Программу составил(и):	
Канд.техн.наук Доцент Петров Алексей Михайлович	

Рабочая программа дисциплины

Моделирование электротехнологических процессов

разработана в соответствии с ФГОС:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 13.03.02 Электроэнергетика и электротехника (приказ Минобрнауки России от 28.02.2018 г. № 144)

Рабочая программа одобрена на заседании кафедры

Электроэнергетики и автоматики

Протокол от г. № Срок действия программы: 2020-2021 уч.г. Зав. кафедрой доцент, к.т.н. Петров А.М.

1	Визирование РПД для исполнения в очередном учебном году
доцент, к.т.н. Петров А.М.	2025 г.
Рабочая программа пересмотре исполнения в 2025-2026 учебно Электроэнергетики и автома	ом году на заседании кафедры
	Зав. кафедрои доцент, к.т.н. петров А.м.
1	Визирование РПД для исполнения в очередном учебном году
доцент, к.т.н. Петров А.М.	2026 г.
Рабочая программа пересмотре исполнения в 2026-2027 учебно Электроэнергетики и автома	ом году на заседании кафедры
	Протокол от 2026 г. № Зав. кафедрой доцент, к.т.н. Петров А.М.
1	Визирование РПД для исполнения в очередном учебном году
доцент, к.т.н. Петров А.М.	2027 г.
Рабочая программа пересмотре исполнения в 2027-2028 учебно Электроэнергетики и автома	ом году на заседании кафедры
	Протокол от 2027 г. № Зав. кафедрой доцент, к.т.н. Петров А.М.
I	Визирование РПД для исполнения в очередном учебном году
доцент, к.т.н. Петров А.М.	2028 г.
Рабочая программа пересмотре исполнения в 2028-2029 учебно Электроэнергетики и автома	ом году на заседании кафедры
	Протокол от 2028 г. № Зав. кафедрой доцент, к.т.н. Петров А.М.

1	пе пи	ОСВОЕНИЯ	ЛИСПИПЛИНЬ	T
-		UK BUR HIN		4

- 1.1 Целью освоения дисциплины «Моделирование электротехнических ком-плексов» является: освоение современных идеологий, методов моделирования и программных средств, используемых для исследования переходных и устано- вившихся режимов работы систем электроснабжения объектов техники и отрас-лей хозяйства и приобретение навыков моделирования и использования при-кладных программ для решения задач электроснабжения;
- 1.2 Задачей курса является дать возможность студенту самостоятельно устанав-ливать основные упрощающие допущения, используемые при моделировании рассматриваемого физического процесса; описать рассматриваемый физический процесс системой дифференциальных уравнений и выбрать математический ме-тод решения; разработать математическую модель и составить план проведения экспериментальных исследований; уметь использовать современное прикладное программное обеспечение для решения задач электроснабжения;

		2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП
Ци	кл (раздел) ООП:	Б1.В.ДВ.01
2.1	Требования к предварь	тельной подготовке обучающегося:
2.1.1	Теоретические основы э.	пектротехники
2.1.2	Электрические машины	
2.1.3	Математика	
2.1.4	2.1.4 Информационные технологии	
2.1.5	2.1.5 Теоретические основы электротехники	
2.1.6	Электрические машины	
2.1.7	Математика	
2.1.8	Информационные техно	погии
2.2	Дисциплины и практи предшествующее:	ки, для которых освоение данной дисциплины (модуля) необходимо как
2.2.1	Переходные процессы в	электроэнергетических системах;
2.2.2	Преобразовательная тех	ника;
2.2.3	Электрооборудование и	электротехнология;
2.2.4	Эксплуатация систем эле	ектроснабжения;

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)
УК-8.1: Демонстрирует понимание возможных угроз для жизни и здоровья человека, в том числе при возникновении чрезвычайных ситуаций
Знать:
Уметь:
Владеть:

УК-8.2: Демонстрирует понимание, как создавать и поддерживать безопасные условия жизнедеятельности, том числе
при возникновении чрезвычайных ситуаций
Внать:
Уметь:
Владеть:

	УК-8.3: Демонстрирует умение оказания первой помощи пострадавшему
Знать:	
Уметь:	
Владеть:	

IK-1.1: Демонстрирует знание правила проектирования, исполнения производственной программы (в части
планирования технических воздействий), а также технологии производства работ оборудования систем
электроснабжения

электроснаожения	
Знать:	
Уметь:	
Владеть:	

ПК-1.2: Демонстрирует умение планировать производственную деятельность, ремонты оборудования систем электроснабжения
Знать:
Уметь:
Владеть:

ПК-1.3: Демонстрирует способность технического обоснования проектов ввода объектов нового строительства и технологического присоединения к электрическим сетям, реновации в части систем электроснабжения
нать:
иеть:
ладеть:

В результате освоения дисциплины обучающийся должен

3.1	Знать:
3.1.1	основные законы электротехники;
3.1.2	методы решения систем алгебраических и дифференциальных уравнений;
3.1.3	конструкцию и принцип действия основного электрооборудования систем электроснабжения;
3.2	Уметь:
	составлять схемы замещения элементов энергосистемы и рассчитывать их параметры, составлять для простейших схем уравнения переходного процесса;
3.3	Владеть:
3.3.1	расчета токов и напряжений для простейших схем в установившемся и переходном режимах.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- пии	Литература	Инте ракт.	Примечание
	Раздел 1. Курс 3						
1.1	Введение.Основные положения курса.Основные термины теории подобия и моделирования. /Лек/	8	2			0	
1.2	Основы моделирования. Геометрическое и аффинное подобие. Критерии подобия физических процессов и правила их определения. Индикаторы подобия. Классификация видов подобия и моделирования. История развития моделирования. Основные этапы разработки и созданя математических моделей. Особенности инженерных расчетов в электроснабжении. /Лек/	8	2			0	
1.3	Основы моделирования в среде Matlab /Лек/	8	2			0	
1.4	Основы моделирования в среде Matlab /Cp/	8	30			0	
1.5	Основные функциональные операторы и блоки Matlab /Пр/	8	2			0	
1.6	Моделирование и исследование процессов в RLC-цепи:Переходные и установившиеся режимы работы RLC-цепи. Матема-тическое описание процессов. Моделирование RLC-цепи. /Лек/	8	2			0	
1.7	Моделирование и исследование процессов в RLC-цепи:Переходные и установившиеся режимы работы RLC-цепи. Математическое описание процессов. Моделирование RLC-цепи. /Пр/	8	2			0	
1.8	Моделирование процессов в RLC- цепи /Ср/	8	30			0	

1.9	Моделирование и исследование трансформаторов:Схема замещение трансформатора. Математическая модель трансформатора. Моделирование трансформатора /Лек/	8	2		0	
1.10	Моделирование трансформаторов /Пр/	8	1		0	
1.11	Моделирование и исследование электрических двигателей: Схема замещения и математическая модель синхронного и асинхронного электродвигателя, двигателя постоянного тока. Нормальные и анормальные режимы работы электрических машин. Моделирование электрических машин. /Лек/	8	2		0	
1.12	Моделирование трансформаторов /Ср/	8	38		0	
1.13	Моделирование и исследование электрических двигателей /Пр/	8	1		0	
1.14	Моделирование и исследование электрических двигателей /Cp/	8	30		0	
1.15	Особенности моделирование полупроводниковой техники: Основные схемы полупроводниковой техники. Моделирование полупроводниковой техники. /Лек/	8	2		0	
1.16	Моделирование полупроводниковой техники /Пр/	8	1		0	
1.17	Моделирование полупроводниковой техники /Cp/	8	30		0	
1.18	Моделирование и исследование систем электроснабжения: Схемы замещения узлов нагрузки промышленных предприятий. Математическое описание установившихся и переходных режимов ра-боты узлов нагрузки. Моделирование узлов нагрузки /Лек/	8	2		0	
1.19	Моделирование систем электроснабжения /Пр/	8	1		0	
1.20	Моделирование систем электроснабжения /Ср/	8	30		0	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Контрольные вопросы и задания

- 1. Понятия модели, моделирования.
- 2. Роль и значение моделирования в современном обществе.
- 3. Классы моделей (классификация).
- 4. Понятия системы. Признаки системности.
- 5. Модель структуры и состава системы.
- 6. Структурная схема системы.
- 7. Виды структурных схем системы.
- 8. Классификация видов моделей систем.
- 10. Системный подход в моделировании систем
- 11. Сигналы в системах.
- 12. Типы сигналов.
- 13. Случайный процесс математическая модель сигнала.
- 14. Классы случайных процессов. Примеры.
- 15. Математические модели реализации случайных процессов. Примеры.
- 16. Модели в адаптивных системах управления.
- 20. Моделирование в системах управления в реальном масштабе и времени.
- 21. Понятие «информационной технологии». Основные принципы ее построе-ния. Примеры информационных технологий.
- 22. Инструментарий информационных технологий. Технические и программ-ные средства построения информационных технологий.

- 23. Функциональная схема современной информационной технологии: этап, операция, действие, элементарная операция.
- 24. Структура информационной технологии: решение задач, решение воз-можных проблем, оформление отчетов, модели и алгоритмы. Программная реа-лизация каждой составляющей.
- 25. Классификация информационных технологий.
- 26. Структурированные и неструктурированные задачи. Подходы к созданию информационных технологий для решения этих задач. Экспертные технологии и технологии альтернативного решения.
- 27. Организация вычислительных сетей на ПК. Основные информационные технологии для организации доступа к глобальным и локальным вычислитель-ным сетям.
- 28. Физическая передающая среда: витая пара, коаксиальный кабель, оптово-локонный кабель.
- 29. Способы передачи информации: последовательный, параллельный код.
- 30. Аппаратные средства для организации доступа к глобальным и локаль-ным вычислительным сетям.
- 31. Информационные технологии Microsoft Office.
- 32. Средства программирования информационных технологий: Borland Del-phi, Borland Builder. Назначение, концепция объектно-ориентированного про-граммирования.
- 33. Пакет MatLAb назначение, общие сведения.
- 34. Применение пакета MatLab для исследования переходных процессов в электрических цепях. Создание алгебраическидифференциальной математиче-ской модели.
- 35. Применение пакета MatLab для исследования электротехнических ком-плексов и систем, программа SimuLink. Моделирование однофазного и трехфаз-ного трансформатора в пакете MatLab.
- 36. Моделирование трехфазного асинхронного двигателя с короткозамкну-тым ротором в пакете MatLab.
- 37. Методы решения систем дифференциальных уравнений при помощи па-кета MatLab.
- 38. Блоки программы SimuLink библиотеки SimPowerSystem BlockSet/Connectors и SimPowerSystem BlockSet/Electrical Source
- 39. Блоки программы SimuLink библиотеки SimPowerSystem BlockSet/Elements и SimPowerSystem BlockSet/Machines.
- 40. Блоки программы SimuLink библиотеки SimPowerSystem BlockSet/Measurements и SimPowerSystem BlockSet/Extra Library\Measuriments.

5.2. Темы письменных работ

Учебный план и программа дисциплины не предусматривают написание письменных работ

5.3. Фонд оценочных средств

Учебный план и программа дисциплины не предусматривают написание письменных работ

5.4. Перечень видов оценочных средств

Контрольные вопросы для проведения текущего контроля. Контрольные вопросы для проведения промежуточной аттестации по итогам освоения дисциплины. Отчет о практической работе. Отчет по самостоятельной работе. Тесты

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)					
6.1. Рекомендуемая литература					
6.3.1 Перечень программного обеспечения					
6.3.1.1 MS Windows 7 (Номер лицензии 62693665 от 19.11.2013)					
6.3.1.2 Mathlab R2010b (Номер лицензии 622090 от 23.12.2009)					
6.3.1.3 MathCAD 15 (Заказ №2564794 от 25.02.2010)					
6.3.1.4 AutoCAD 11					
6.3.2 Перечень информационных справочных систем					

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 7.1 421 ауд. учебная аудитория для проведения лекционных, практических, семинарских и интерактивных занятий; мультимедийный класс;
- 7.2 436 ауд. учебная аудитория для проведения лекционных, практических, лабораторных, семинарских, интерактивных занятий; самостоятельной работы; мультимедийный класс; компьютерный класс;

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Планирование и организация времени, необходимого для изучения дисциплины

Важным условием успешного освоения дисциплины является создание системы правильной организации труда, позволяющей распределить учебную нагрузку равномерно в соответствии с графиком образовательного процесса. Большую помощь в этом может оказать составление плана работы на семестр, месяц, неделю, день. Его наличие позволит подчинить свободное время целям учебы, трудиться более успешно и эффективно. С вечера всегда надо распределять работу на завтрашний день. В конце каждого дня целесообразно подвести итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине они произошли. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что-то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана. Все задания к практическим работам, а также задания, вынесенные на самостоятельную работу, рекомендуется выполнять непосредственно после соответствующей темы лекционного курса, что способствует лучшему усвоению материала, позволяет своевременно выявить и устранить «пробелы» в знаниях, систематизировать ранее пройденный материал, на его

основе приступить к овладению новыми знаниями и навыками.

Система обучения основывается на рациональном сочетании нескольких видов учебных занятий (в первую очередь, лекций и лабораторных), работа над которыми обладает определенной спецификой.

Подготовка к лекциям

Знакомство с дисциплиной происходит уже на первой лекции, где от студента требуется не просто внимание, но и самостоятельное оформление конспекта. При работе с конспектом лекций необходимо учитывать тот фактор, что одни лекции дают ответы на конкретные вопросы темы, другие — лишь выявляют взаимосвязи между явлениями, помогая студенту понять глубинные процессы развития изучаемого предмета как в истории, так и в настоящее время. Конспектирование лекций — сложный вид вузовской аудиторной работы, предполагающий интенсивную умственную деятельность студента. Конспект является полезным тогда, когда записано самое существенное и сделано это самим обучающимся. Не надо стремиться записать дословно всю лекцию. Такое «конспектирование» приносит больше вреда, чем пользы. Целесообразно вначале понять основную мысль, излагаемую лектором, а затем записать ее. Желательно запись осуществлять на одной странице листа или оставляя поля, на которых позднее, при самостоятельной работе с конспектом, можно сделать дополнительные записи, отметить непонятные места.

Конспект лекции лучше подразделять на пункты, соблюдая красную строку. Этому в большой степени будут способствовать вопросы плана лекции, предложенные преподавателям. Следует обращать внимание на акценты, выводы, которые делает лектор, отмечая наиболее важные моменты в лекционном материале замечаниями «важно», «хорошо запомнить» и т.п. Можно делать это и с помощью разноцветных маркеров или ручек, подчеркивая термины и определения.

Целесообразно разработать собственную систему сокращений, аббревиатур и символов. Однако при дальнейшей работе с конспектом символы лучше заменить обычными словами для быстрого зрительного восприятия текста.

Работая над конспектом лекций, всегда необходимо использовать не только учебник, но и ту литературу, которую дополнительно рекомендовал лектор. Именно такая серьезная, кропотливая работа с лекционным материалом позволит глубоко овладеть теоретическим материалом.

Кроме базовых учебников рекомендуется самостоятельно использовать имеющиеся в библиотеке учебно-методические пособия. Независимо от вида учебника, работа с ним должна происходить в течение всего семестра. Эффективнее работать с учебником не после, а перед лекцией

Степень усвоения материала проверяется следующими видами контроля текущий (опрос, контрольные работы); защита практических работ; промежуточный (зачет).

Практические работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности практических работ для подготовки к ним необходимо разобрать лекцию по соответствующей теме, проработать дополнительную литературу и источники. Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие работа с текстами учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; работа над темами для самостоятельного изучения; участие в работе студенческих научных конференций; подготовка к зачету.

Подготовка к промежуточной аттестации

При подготовке к промежуточной аттестации целесообразно:

- внимательно изучить перечень вопросов и определить, в каких источниках находятся сведения, необходимые для ответа на них:
- внимательно прочитать рекомендованную литературу;
- составить краткие конспекты ответов (планы ответов).

Зачет – форма итоговой проверки знаний студентов.

Для успешной сдачи Зачета необходимо выполнить следующие рекомендации –готовиться к зачету следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до зачета. Данные перед зачетом три-четыре дня эффективнее всего использовать для повторения и систематизации материала.

Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Заполярный государственный университет им. Н. М. Федоровского»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине Моделирование электротехнологических процессов

Уровень образования: бакалавриат	
Кафедра «Электроэнергетики и авто	оматики»
Разработчик ФОС:	
Канд.техн.наук, Доцент, Петров Але Петров Алексей Михайлович	ексей Михайлович
Оценочные материалы по дисципли кафедры, протокол № от г.	не рассмотрены и одобрены на заседании
Заведующий кафедрой	к.т.н., доцент А.М. Петров

Фонд оценочных средств по дисциплине Моделирование электротехнологических процессов для текущей/ промежуточной аттестации разработан в соответствии с Федеральным государственным образовательным стандартом высшего образования по специальности / направлению подготовки 13.03.02 Электроэнергетика и электротехника на основе Рабочей программы дисциплины Моделирование электротехнологических процессов, утвержденной решением ученого совета от г., Положения о формировании Фонда оценочных средств по дисциплине (ФОС), Положения о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся ЗГУ, Положения о государственной итоговой аттестации (ГИА) выпускников по образовательным программам высшего образования в ЗГУ им. Н.М. Федоровского.

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1. Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достижения				
поддерживать в повседневной жизни					
	УК-8.2 Демонстрирует понимание, как создавать и поддерживать безопасные условия жизнедеятельности, том числе при возникновении чрезвычайных ситуаций				
	УК-8.3 Демонстрирует умение оказания первой помощи пострадавшему				

ПК-1 Способность участвовать в	ПК-1.1 Демонстрирует знание правила
проектировании электрических	проектирования, исполнения производственной
станций и подстанций	программы (в части планирования технических
	воздействий), а также технологии производства
	работ оборудования систем электроснабжения
	ПК-1.2 Демонстрирует умение планировать
	производственную деятельность, ремонты
	оборудования систем электроснабжения
	ПК-1.3 Демонстрирует способность технического
	обоснования проектов ввода объектов нового
	строительства и технологического присоединения к
	электрическим сетям, реновации в части систем
	электроснабжения

Таблица 2. Паспорт фонда оценочных средств

No	K	Код результата	· ·	е средства ттестации	Оценочные средства промежуточной аттестации		
№ п/п	Контролируемые разделы (темы) дисциплины	обучения по дисциплине/ модулю	Наименовани е	Форма	Наименовани е	Форма	
8 семестр							

2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы.

2.1. Задания для текущего контроля успеваемости

- 1. Понятия модели, моделирования.
- 2. Роль и значение моделирования в современном обществе.
- 3. Классы моделей (классификация).
- 4. Понятия системы. Признаки системности.
- 5. Модель структуры и состава системы.
- 6. Структурная схема системы.
- 7. Виды структурных схем системы.
- 8. Классификация видов моделей систем.
- 10. Системный подход в моделировании систем
- 11. Сигналы в системах.
- 12. Типы сигналов.
- 13. Случайный процесс математическая модель сигнала.
- 14. Классы случайных процессов. Примеры.
- 15. Математические модели реализации случайных процессов. Примеры.
- 16. Модели в адаптивных системах управления.
- 20. Моделирование в системах управления в реальном масштабе и времени.
- 21. Понятие «информационной технологии». Основные принципы ее построе-ния. Примеры информационных технологий.
- 22. Инструментарий информационных технологий. Технические и программ-ные средства построения информационных технологий.
- 23. Функциональная схема современной информационной технологии: этап, операция, действие, элементарная операция.
- 24. Структура информационной технологии: решение задач, решение воз-можных проблем, оформление отчетов, модели и алгоритмы. Программная реа-лизация каждой составляющей.

- 25. Классификация информационных технологий.
- 26. Структурированные и неструктурированные задачи. Подходы к созданию информационных технологий для решения этих задач. Экспертные технологии и технологии альтернативного решения.
- 27. Организация вычислительных сетей на ПК. Основные информационные технологии для организации доступа к глобальным и локальным вычислитель-ным сетям.
- 28. Физическая передающая среда: витая пара, коаксиальный кабель, оптово-локонный кабель.
 - 29. Способы передачи информации: последовательный, параллельный код.
- 30. Аппаратные средства для организации доступа к глобальным и локаль-ным вычислительным сетям.
 - 31. Информационные технологии Microsoft Office.
- 32. Средства программирования информационных технологий: Borland Del-phi, Borland Builder. Назначение, концепция объектно-ориентированного про-граммирования.
 - 33. Пакет MatLAb назначение, общие сведения.
- 34. Применение пакета MatLab для исследования переходных процессов в электрических цепях. Создание алгебраически- дифференциальной математиче-ской модели.
- 35. Применение пакета MatLab для исследования электротехнических ком-плексов и систем, программа SimuLink. Моделирование однофазного и трехфаз-ного трансформатора в пакете MatLab.
- 36. Моделирование трехфазного асинхронного двигателя с короткозамкну-тым ротором в пакете MatLab.
- 37. Методы решения систем дифференциальных уравнений при помощи па-кета MatLab.
- 38. Блоки программы SimuLink библиотеки SimPowerSystem BlockSet/Connectors и SimPowerSystem BlockSet/Electrical Source
- 39. Блоки программы SimuLink библиотеки SimPowerSystem BlockSet/Elements и SimPowerSystem BlockSet/Machines.
- 40. Блоки программы SimuLink библиотеки SimPowerSystem BlockSet/Measurements и SimPowerSystem BlockSet/Extra Library\Measuriments.

2.2. Задания для промежуточной аттестации

2.2.1. Контрольные вопросы к экзамену(зачету)

Контрольные вопросы для проведения текущего контроля. Контрольные вопросы для проведения промежуточной аттестации по итогам освоения дисциплины. Отчет о практической работе. Отчет по самостоятельной работе. Тесты

2.2.2. Типовые экзаменационные задачи

2.2.3. Темы/задания курсовых проектов/курсовых работ

Учебный план и программа дисциплины не предусматривают написание письменных работ