Документ подписан простой элект Мийнотерство науки и высшего образования РФ
Информация о влежне ральное государственное бюджет ное образовательное учреждение ФИО: Игнатенко Виталий иванович
Должность: Проректор по образовательной деятельности и мень ком образовательное учреждение должность: Проректор по образовательной деятельности и мень ком образования
Дата подписания Заполя рибый государственный университет им. Н. М. Федоровского» Уникальный программный ключ:

а49ае 343аf 5448 d45 d7 e 3 e 1 e 4996 59 da 8109 ba 78

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

«Металлургия свинца и цинка»

Ф акультет: $\underline{\Gamma T \Phi}$		
Направление подготовки: 22.03.02 «Мета	<u>ллургия»</u>	
Направленность (профиль): «Прогрессив	вные методы получения ці	ветных металлов»
Уровень образования: <u>бакалавриат</u> Кафедра « <u>Металлургии, машин и оборудог</u> наименование кафедры	<u>вания</u> »	
Разработчик ФОС:		
К.с-х.н., доцент		Носова О.В.
(должность, степень, ученое звание)	(подпись)	(ФИО)

Оценочные материалы по дисциплине рассмотрены и одобрены на заседании кафедры, протокол № $\underline{2}$ от « $\underline{07}$ » $\underline{05}$ 2025 г.

Заведующий кафедрой к.т.н., доцент Крупнов Л.В.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения
компетенции	
ПК-1: Способствует	ПК-1.1: Применяет знания основных закономерностей
осуществлению и	протекания металлургических процессов для повышения
корректировки	эффективности производства цветных металлов
технологических процессов в	
металлургии	ПК-1.2: Использует основные принципы разработки
	технических решений и технологий в области металлурги

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы)	Формируемая компетенция	Наименование оценочного	Показатели оценки
дисциплины	No.Wille Letting	средства	man against
Структура и содержание курса. Общие вопросы металлургии свинца и цинка	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Современные технологические схемы переработки свинцовых концентратов	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Агломерирующий обжиг свинцовых концентратов	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Восстановительная плавка свинцового агломерата	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Автогенные способы плавок свинцовых концентратов	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Рафинирование чернового свинца	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Комплексная переработка шлаков и пылей свинцового производства	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Основные направления в решении экологических вопросов в металлургии свинца	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам

Свойства цинка и его соединений. Цинковые минералы, руды и концентраты	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Современные технологические схемы переработки цинковых концентратов	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Обжиг цинковых концентратов перед выщелачиванием	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Выщелачивание обожженного цинкового концентрата	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Очистка растворов сульфата цинка от примесей	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Экзамен	ПК-1	Решение всех тестовых заданий по темам	Решение всех тестовых заданий по темам

1. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	Наименование	Сроки	Шкала	Критерии				
	оценочного средства	выполнения	оценивания	оценивания				
Про	межуточная аттестация в	форме «Экзамена	a»					
	Тестовые задания	В течении обучения по дисциплине	от 0 до 5 баллов	от 3 до 5 баллов				
ИТС)ΓO:	-	баллов	-				
оценочного средства выполнения оценивания оценивания Промежуточная аттестация в форме «Экзамена» Тестовые задания В течении от 0 до 5 баллов от 3 до 5 баллов дисциплине обучения по дисциплине баллов								
Экза	амен выставляется при сдаче с	студентом всех тес	товых заданий					

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

Для очной, очно-заочной формы обучения Задания для текущего контроля и сдачи дисциплины

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
(тестирование)	Томпетенции
Вариант 1	
1. Какая промышленность является крупным потребителем свинца? а) Кабельная промышленность б) Производство трубопроводов в) Производство магнитов г) Мебельная промышленность	ПК-1
2. Минерал Церрусит (PbCO ₃) относится к: а) Окисленные руды б) Медно-цинковые руды в) Вкрапленные руды г) Богатые руды	ПК-1
3. Предварительная операция восстановительной плавки свинцового концентрата — это: а) Реакционная плавка б) Шахтная плавка в) Сульфидирующий обжиг г) Агломерационный обжиг	ПК-1
 4. Существуют два вида спекальных машин. Машины какого ви наиболее часто используются? а) С автоматической подачей флюса б) С просасыванием через слой шихты в) С просасыванием через слой песка г) С автоматическим высчитыванием процентного содержани компонентов 	
 5. Металлическая медь взаимодействует с сульфидом железа по реакции: a) 2Cu + FeS = Cu₂S + Fe б) 2Cu₂ + 2FeS = 2Cu₂S + 2Fe в) Cu + Fe₂S = Cu₂S + Fe₂ г) Cu + FeS = CuS + Fe 	ПК-1
 6. Для снижения содержания серы в агломерате существуют два способа. Какой из следующих пунктов подходит? а) Добавить больше флюса б) Убавить объем необходимого агломерата в) Добавить материал с низким содержанием серы г) Вести нагревание 	п ПК-1

7 D vovož domyo vovo vymog opyvov z vovyovenomovo	ПК-1
7. В какой форме находится свинец в концентратах?	11N-1
а) В виде оксида	
б) В виде сульфида	
в) В виде чистого металла	
г) В виде гидроксида	
8. Какой сплав называется латунью?	ПК-1
a) Cu=60%, Zn=40%	
б) Cu= 90%, Zn=10%	
в) Cu=65%, Zn=20%, Ni=15%	
г) Cu=60%, Zn=15%, Ni=25%	
9. Каким требованиям должен удовлетворять агломерат для	ПК-1
последующей плавки в шахтной печи?	
а) Иметь высокую плотность	
б) Быть прочным и пористым	
в) Иметь низкую температуру плавления	
г) Быть хрупким	
10. Почему не существует гидрометаллургии свинца?	ПК-1
а) Не существует дешевого растворителя для свинца	
б) При растворении, свинец загрязняется примесями	
в) Свинец не реагирует с кислотой	
г) Так как при растворении свинца в кислоте выделяется большое	
количество теплоты	
11. Свежеприготовленная свинцовая кислота растворяется в:	ПК-1
а) Воде	
б) Масле	
в) Кислоте	
г) Спирте	
12. Какой из этих процессов <u>не</u> происходит при шахтной плавке	ПК-1
свинцового агломерата?	
а) Восстановление	
б) Сульфидирование	
в) Осаждение	
г) Окисление	
13. Почему при обжиге цинковых концентратов образование	ПК-1
сульфатов не критично?	1111 1
а) При растворении в серной кислоте получается сульфат цинка	
б) Сульфат взаимодействует с восстановителем с образованием	
цинка	
в) Сульфат цинка не растворяется в кислоте	
г) Сульфат цинка повышает температуру плавления	

14. Какой пирометаллургический метод используется при	ПК-1
получении цинка?	
а) Электролиз расплавов	
б) Дистилляционный метод	
в) Реакционная плавка	
г) Окислительная плавка	
15. В виде каких соединений свинец не может присутствовать в	ПК-1
агломерате?	
a) Сульфата PbSO ₄	
б) Силикатов mPbO · nSiO ₂	
в) Ферритов xPbO ·yFe ₂ O ₃	
г) Сульфита свинца PbSO ₃	
16. Приведите реакцию сульфидирования, протекающую при	ПК-1
восстановительной плавке.	
a) $MeS + Fe = Me + FeS$	
6) $Cu_2O + FeS = Cu_2S + FeO$	
B) $MeO + CO = Me + CO_2$	
Γ) $CO_2 + C = 2CO$	
17. Каково содержание меди в черновом свинце после операции	ПК-1
грубого обезмеживания?	
a) 5%	
6) 0,5%	
в) 0,05%	
г) 0,005%	
18. Железо в процессе обжига цинковых концентратов может	ПК-1
присутствовать в виде:	
а) Оксида	
б) Гидроксида	
в) В виде чистого металла	
г) Сульфида	
19. Сфалерит (ZnS) окисляется по реакции:	ПК-1
a) $ZnS + 3O_2 = ZnO + 2SO_2$	
б) $3ZnS + 4O_2 = 4ZnO + 4SO_2$	
B) $2ZnS + 3O_2 = 2ZnO + 2SO_2$	
$\Gamma) ZnS + 3O_2 = 2ZnO + 7SO_2$	
20. Какой из следующих способов относится к рафинированию	ПК-1
цинка?	
а) Окисление	
б) Сульфидирование	
в) Раскиесление	
г) Ректификация	

21. Что при гидрометаллургии цинка выделяется на аноде?	ПК-1
а) Водород	
б) Вода	
в) Кислород	
г) Цинк	
22. Каково процентное содержание элементов в соединении PbS?	ПК-1
a) Pb= 15,75%; S=84,25%	
б) Pb= 86,6%; S=13,4%	
в) Pb= 79,3%; S=20,7%	
г) Pb= 94,52%; S=5,48%	
23. Каково процентное содержание элементов в соединении	ПК-1
$3PbS \cdot Sb_2S_3$?	
a) Pb=15,36%; S=16,46%; Sb=68,18%	
б) Pb=68,18%; S=15,36%; Sb=16,46%	
в) Pb=23,09%; S=58,75%; Sb=18,16%	
г) Pb=58,75%; S=18,16%; Sb=23,09%	
24. Химический состав концентрата	ПК-1

Pb Zn Cu Fe S SiO_2 CaO Al_2O_3 Прочие 9,5 21,0 46,0 3,0 8,5 2,5 2,5 4,0 3,0

Концентрат представлен следующим минералогическим составом: Свинец содержится в галените (PbS);

Цинк – в сфалерите (ZnS);

Медь – в виде халькопирита (CuFeS₂) и ковеллина (CuS) в соотношении 1:1;

Остальное железо – в пирите (FeS_2) и пирротине (Fe_7S_8) в соотношении 2:1.

Пустая порода состоит из кварца (SiO₂), известняка (CaCO₃), глинозема (Al_2O_3)

ИТОГО	46,0	9,5	?	8,49	21,06	3,00	2,36	2,5	2,5	1,59	100,00
Прочие										1,59	1,59
Al_2O_3									2,5		2,5
SiO ₂								2,5			2,5
CaCO ₃						3,0	2,36				5,36
FeS_2				4,78	5,48						10,26
Fe ₇ S ₈				2,39	1,57						3,96
CuS			?		0,75						?
CuFeS ₂			?	1,32	1,51						?
ZnS		9,5			4,65						14,15
PbS	46,0				7,10						53,10
	10	211	Cu	10	ט	Cuo	002	BIO ₂	711203	ие	
Соедин ение	Содержание компонентов, кг Pb Zn Cu Fe S CaO CO2 SiO2 Al2O3 Проч ВСЕІ										ВСЕГО

- a) Cu в: CuFeS₂ =1,5; CuS =1,5; сумма: CuFeS₂ =4,33; CuS =2,25; Cu=3
- б) Cu в: CuFeS $_2$ =1,7; CuS =1,7; сумма: CuFeS $_2$ =4,53; CuS =2,45;

Cu=3,4

в) Cu в: CuFeS $_2$ =1,3; CuS =1,3; сумма: CuFeS $_2$ =4,13; CuS =2,05;

Cu=2,6

 Γ) Cu в: CuFeS₂ =0,7; CuS =0,7; сумма: CuFeS₂ =3,53; CuS =1,45; Cu=1,4

25. Химический состав свинцового агломерата, %:

42 Pb; 7,0 Zn; 3,0 Cu; 15,0 Fe; 2,2 S; 9,5 SiO₂; 4,5 CaO; 4,3Al₂O₃; Прочие 12,5

Минералогический анализ агломерата показал, что отношение сульфидной серы к сульфатной равно 4:1.

Сульфидная сера связана в агломерате:

- с цинком (50%);
- со свинцом (25%);
- с медью (25%).

Сульфатная сера связана

- с кальцием (50%);
- со свинцом (25%);
- с цинком (25%).

 $Me\partial b$ в агломерате присутствует в виде соединений халькозина и оксида меди (I).

Железо в агломерате представлено:

- магнетитом на 50%;
- оксидом железа (III) -на 25%;
- в виде феррита свинца на 25%.

Свинец (50% от общего его содержания) находится в виде силиката, а остальной свинец, не связанный в сульфидную, сульфатную, силикатную и ферритную формы, присутствует в агломерате в виде свободного оксида свинца.

Остальные металлы (цинк, кальций, кремний и алюминий) находится в агломерате в виде свободных оксидов.

Соединен					Co	держани	е компоне	ентов, кг				
RИ	Pb	Zn	Cu	Fe	S_s	S_{SO_4}	О	SiO	CaO	Al_2O_3	Про	Всего
						~ 504		2			чие	
PbO	10,48						0,81					11,29
PbO·SiO ₂	21,0						1,62	6,08				28,7
PbO·Fe ₂ O ₃	6,96			3,75			2,15					12,86
PbSO ₄	0,71					0,11	0,22					1,04
PbS	2,85				0,44							3,29
ZnO		4,98					1,22					6,20

ZnS		1,80			0,88							2,68
ZnSO ₄		0,22				0,11	0,22					0,55
Cu ₂ S			?		0,44							?
Cu ₂ O			?				0,16					?
Fe ₃ O ₄				7,5			2,87					10,37
Fe ₂ O ₃				3,75			1,61					5,36
CaO									4,12			4,12
CaSO ₄						0,22	0,33		0,38			0,93
SiO ₂								3,42				3,42
Al_2O_3										4,3		4,3
Прочие											1,29	1,29
ИТОГО	42	7,0	?	15,0	1,76	0,44	11,21	9,5	4,5	4,3	1,29	100,0

- а) Cu в: Cu₂S=1,7; Cu₂O =1,7; сумма: Cu₂S =3,84; Cu₂O =1,86; Cu=2,4
- б) Cu в: Cu₂S=0,4; Cu₂O =0,4; сумма: Cu₂S =0,84; Cu₂O =0,56; Cu=0,8
- в) Cu в: $Cu_2S=1,5$; $Cu_2O=1,5$; сумма: $Cu_2S=1,94$; $Cu_2O=1,66$; Cu=3
- Γ) Cu в: Cu₂S=1,1; Cu₂O =1,1; сумма: Cu₂S =1,54; Cu₂O =1,26; Cu=2,2

Вариант 2	
1. Процесс растворения в жидком растворителе одного или	ПК-1
нескольких составляющих твёрдого материала – это:	
а) Азотирование	
б) Карбонизация	
в) Выщелачивание	
г) Обезмеживание	
2. Минерал Сфалерит (ZnS) относится к:	ПК-1
а) Медно-цинковые руды	
б) Смешенные руды	
в) Окисленные руды	
г) Сульфидные руды	
3. Классический вариант реакционной плавки – это:	ПК-1
а) Горновая плавка	
б) Шахтная плавка	
в) Плавка в КС	
г) Восстановительная плавка	
4. Существуют два вида спекальных машин. Какой из	ПК-1
перечисленных видов можно к ним отнести?	
а) С подачей дутья под давлением	
б) С автоматическим высчитыванием процентного содержания	
компонентов	
в) С просасыванием через слой песка	
г) С автоматической подачей флюса	
5. Штейн – это:	ПК-1
а) Сплав меди со свинцом	

б) Сплав свинца с цинком	
в) Сплав сульфидов металлов	
г) Сплав оксидов металлов	
6. Способ извлечения летучих компонентов из расплавленных	ПК-1
шлаков, содержащих цинк, свинец или олово – это:	
а) Электроосаждение	
б) Фьюмингование	
в) Разбавление	
г) Выщелачивание	
7. В какой форме находится цинк в концентратах?	ПК-1
а) В виде оксида	
б) В виде скенда	
в) В виде чистого металла	
г) В виде сульфида	
	ПК-1
8. Наличие каких примесей из ниже перечисленных являются	1111/-1
нежелательными для операции выщелачивания?	
а) Сульфаты	
б) Ферриты	
в) Силикаты	
г) Оксиды	TT 4
9. Каким требованиям должен удовлетворять агломерат для	ПК-1
последующей плавки в шахтной печи?	
а) Иметь высокую температуру начала плавления	
б) Быть хрупким	
в) Иметь низкую температуру плавления	
г) Иметь высокую плотность	
10. Почему не существует гидрометаллургии свинца?	ПК-1
а) При растворении, свинец загрязняется примесями	
б) В серной и соляной кислоте свинец покрывается нерастворимой	
оксидной пленкой	
в) Так как при растворении свинца в кислоте выделяется большое	
количество теплоты	
г) Свинец не реагирует с кислотой	
11. Свежеприготовленная свинцовая кислота растворяется в:	ПК-1
а) Воде	
б) Масле	
в) Соли	
г) Щелочи	
12. Какой из этих процессов <u>не</u> происходит при шахтной плавке	ПК-1
свинцового агломерата?	
а) Йодирование	
б) Сульфидирование	
, , ,	
в) Восстановление	
г) Горение углеродистого топлива	ПК-1
13. Какими свойствами обладают сплавы цинка с алюминием?	11N-1
а) Сверхпрочностью	

б) Сверхпластичностью	
в) Легкостью	
г) Устойчивостью к истиранию 14. При пирометаллургической переработке цинкового концентрата,	ПК-1
одним из продуктов является Раймовка. Что это такое?	TIK T
а) Продукт конденсации паров	
б) Цинк, содержащий примеси от 1 до 5%	
в) Отходящие газы	
г) Твердый остаток после дистилляции	ПК-1
15. Какие реакции протекают в процессе восстановительной плавки	11K-1
свинцового агломерата?	
a) $MeS + Fe = Me + FeS$	
6) $Cu_2O + FeS = Cu_2S + FeO$	
B) $MeO + CO = Me + CO_2$	
r) $2Cu + PbS = Cu_2S + Pb$	THE 1
16. При каком соотношении кислорода и углерода ведется	ПК-1
восстановительная плавка?	
a) 1:1	
6) 1:0,75	
в) 1:2	
г) 1:5,25	
17. Целью обжига цинковых концентратов является:	ПК-1
а) подготовка материала к разбавлению его кислотой	
б) подготовка материала к дальнейшей переработке	
в) извлечь металлы платиновой группы	
г) сделать пульпу	
18. Железо в процессе обжига цинковых концентратов может	ПК-1
присутствовать в виде:	
а) чистого металла	
б) гидроксида	
в) сложного соединения, представленного сульфидами железа и	
цинка	
г) оксида	
19. Каким способом выполняется выплавка и очистка цинковых	ПК-1
концентратов?	
а) Термическим	
б) Восстановительным	
в) Окислительным	
г) Нейтрализацией	
20. Сколько слоев получается в результате ликвации цинка?	ПК-1
a) 2	
б) 3	
в) 4	
r) 5	
21. Что при гидрометаллургии цинка выделяется на катоде?	ПК-1
а) Водород	

б) Вода	
в) Кислород	
г) Цинк	
22. Каково процентное содержание элементов в соединении	ПК-1
$2\text{PbS}\cdot\text{Cu}_2\text{S}\cdot\text{Sb}_2\text{S}_3$?	
a) Pb=19,63%; S=42,33%; Cu=24,95%; Sb=13,09%	
б) Pb=42,33%; S=13,09%; Cu=19,63%; Sb=24,95%	
в) Pb=42,33%; S=19,63%; Cu=13,09%; Sb=24,95%	
г) Pb=24,95%; S=19,63%; Cu=13,09%; Sb=42,33%	
23. Каково процентное содержание элементов в соединении PbCO ₃ ?	ПК-1
a) Pb=77,53%; C=4,49%; O=17,98%	
б) Pb=4,49%; C=77,53%; O=17,98%	
в) Pb=77,53%; C=17,98%; О=4,49%	
г) Pb=17,98%; C=4,49%; O=77,53%	

24. Химический состав концентрата

ПК-1

Pb	Zn	Cu	Fe	S	SiO_2	CaO	Al_2O_3	Прочие
46,0	9,5	3,0	8,5	21,0	2,5	3,0	2,5	4,0

Концентрат представлен следующим минералогическим составом:

Свинец содержится в галените (PbS);

Цинк – в сфалерите (ZnS);

Медь – в виде халькопирита ($CuFeS_2$) и ковеллина (CuS) в соотношении 1:1;

Остальное железо — в пирите (FeS_2) и пирротине (Fe_7S_8) в соотношении 2:1.

Пустая порода состоит из кварца (SiO_2) , известняка $(CaCO_3)$, глинозема (Al_2O_3) .

Соединение				•	Содер	жание ко	омпоненто	ов, кг	•	•	
	Pb	Zn	Cu	Fe	S	CaO	CO_2	SiO ₂	Al_2O_3	Прочие	ВСЕГО
PbS	46,0				?						?
ZnS		9,5			?						?
CuFeS ₂			1,5	1,32	1,41						4,33
CuS			1,5		0,75						2,25
Fe ₇ S ₈				2,39	1,57						3,96
FeS ₂				4,78	5,48						10,26
CaCO ₃						3,0	2,36				5,36
SiO ₂								2,5			2,5
Al ₂ O ₃					1				2,5		2,5
Прочие										1,59	1,59
ИТОГО	46,0	9,5	3,00	8,49	?	3,0	2,36	2,5	2,5	1,59	100,00

- а) S в: PbS=46,15; ZnS =11,5; сумма: PbS =92,15; ZnS =21; S=33
- б) S в: PbS=4,52; ZnS =6,18; сумма: PbS =50,52; ZnS =15,68; S=4
- в) S в: PbS=50,1; ZnS =15,5; сумма: PbS =96,1; ZnS =25; S=25
- г) S в: PbS=7,11; ZnS =4,68; сумма: PbS =20,36; ZnS =14,18; S=21

ПК-1

25. Химический состав свинцового агломерата, %:

42 Pb; 7,0 Zn; 3,0 Cu; 15,0 Fe; 2,2 S; 9,5 SiO₂; 4,5 CaO; 4,3Al₂O₃; Прочие 12,5

Минералогический анализ агломерата показал, что отношение сульфидной серы к сульфатной равно 4:1.

Сульфидная сера связана в агломерате:

- с цинком (50%);
- со свинцом (25%);
- с медью (25%).

Сульфатная сера связана

- с кальцием (50%);
- со свинцом (25%);
- с цинком (25%).

 $Me\partial b$ в агломерате присутствует в виде соединений халькозина и оксида меди (I).

Железо в агломерате представлено:

- магнетитом на 50%;
- оксидом железа (III) -на 25%;
- в виде феррита свинца на 25%.

Свинец (50% от общего его содержания) находится в виде силиката, а остальной свинец, не связанный в сульфидную, сульфатную, силикатную и ферритную формы, присутствует в агломерате в виде свободного оксида свинца.

Остальные металлы (цинк, кальций, кремний и алюминий) находится в агломерате в виде свободных оксидов.

Соединени Содержание компонентов, кг												
Я	Pb	Zn	Cu	Fe	S_s	S_{SO_4}	О	SiO ₂	CaO	Al ₂ O ₃	Прочие	Всего
PbO	10,48						0,81					11,29
PbO·SiO ₂	21,0						1,62	6,08				28,7
PbO·Fe ₂ O ₃	6,96			3,75			2,15					12,86
PbSO ₄	0,71					0,11	0,22					1,04
PbS	2,85				?							?
ZnO		4,98					1,22					6,20
ZnS		1,80			0,88							2,68
$ZnSO_4$		0,22				?	0,22					?
Cu_2S			1,75		0,44							2,19
Cu ₂ O			1,25				0,16					1,41
Fe ₃ O ₄				7,5			2,87					10,37
Fe_2O_3				3,75			1,61					5,36
CaO									4,12			4,12
CaSO ₄						0,22	0,33		0,38			0,93
SiO_2								3,42				3,42
Al_2O_3										4,3		4,3
Прочие											1,29	1,29
ИТОГО	42	7,0	3,00	15,0	?	?	11,21	9,5	4,5	4,3	1,29	100,0

- a) Ss в: PbS =0,22; Sso₄ в: ZnSO₄ =0,44; сумма: ZnSO₄ =3,29; PbS =0,44; Ss =0,44; Sso₄=1,76
- б) Ss в: PbS =1,7; Sso₄ в: ZnSO₄ =1,7; сумма: ZnSO₄ =4,53; PbS =2,45; Ss =3,4; Sso₄=0,52

в) Ss в: PbS =0,44; Sso ₄ в: ZnSO ₄ =0,22; сумма: ZnSO ₄ =0,44; PbS =3,29;	
$Ss = 1,76; Sso_4 = 0,44$	
г) Ss в: PbS =0,7; Sso ₄ в: ZnSO ₄ =0,7; сумма: ZnSO ₄ =3,53; PbS =1,45; Ss	
$=1,4$; $Sso_4=1,18$	

Вариант 3	
1. Выщелачивание применяют для:	ПК-1
а) Будущего осаждения, чтобы разбавить пульпу	
б) Более полного извлечения в раствор основного металла	
в) Удаления меди	
г) Преобразования основания в кислоту	
2. Медно-цинковые руды являются:	ПК-1
а) Полиметаллическими рудами	
б) Монометаллическими рудами	
в) Медными рудами	
г) Цинковыми рудами	
3. Целью агломерационного обжига свинцовых концентратов	ПК-1
является:	
а) Удаление пустой породы	
б) Удаление серы	
в) Обжечь агломерат	
г) Удалить флюс	
4. Целю шахтной плавки является:	ПК-1
а) Более полное извлечение меди в черновой металл	
б) Более полное извлечение цинка в черновой металл	
в) Более полное извлечение свинца в черновой металл	
г) Более полное извлечение металлов платиновой группы	
5. Чем отличается штейн от файнштейна?	ПК-1
а) В штейне содержится 2-3% сульфида железа	
б) В штейне содержится на 2-3% больше ценных металлов	
в) В файнштейне нет примесей	
г) В файнштейне содержится 2-% сульфида железа	
6. Чем обусловлен выбор серной кислоты как растворителя в	ПК-1
выщелачивании цинка?	
а) Хорошей растворимостью в ней всех компонентов, кроме	
цинка	
б) Хорошей растворимостью в ней пустой породы	
в) Хорошей растворимостью в ней флюсов	
г) Хорошей растворимостью с ней оксида цинка	
7. Черновой свинец:	ПК-1
а) Не содержит примесей	
б) Всегда содержит небольшое количество примесей	
в) Такого металла нет	
г) Содержит 50% примесей	
8. Какова роль воды при агломерирующем обжиге?	ПК-1
1 1 1 1-17	

а) Разбавляет агломерат	
б) Изменят плотность	
в) Ускоряет химические реакции	
г) Терморегулятор	
9. Каким требованиям должен удовлетворять агломерат для	ПК-1
последующей плавки в шахтной печи?	
а) Иметь низкую температуру плавления	
б) Иметь высокую плотность	
в) Содержать мало серы, если не получают штейн	
г) Быть хрупким	
10. Можно ли использовать свинцовые трубы в городской	ПК-1
водопроводной сети?	1111
а) Да, но при этом их нужно покрывать эмалями	
б) Нет, потому что в водной среде свинец покрывается оксидной	
пленкой	
в) Да, потому что в водной среде свинец покрывается оксидной	
пленкой	
г) Нет, потому что он реагирует с водой, и она становится	
непригодна к питью	
11. Чем отличается обжиг свинцовых концентратов (для	ПК-1
последующей шахтной плавки) от цинковых концентратов (для	1111 1
выщелачивания)?	
а) При обжиге цинкового концентрата нужна большая	
температура	
б) Для шахтной плавки необходим окускованный пористый	
продукт	
в) При обжиге свинцовых концентратов требуется более высокая	
температура	
г) Для выщелачивания необходим окускованный пористый	
продукт	
12. Цинк взаимодействует с концентрированной кислотой:	ПК-1
а) Азотистой	1111 1
б) Азотной	
в) Сернистой	
г) Серновато-кислой	
13. Для каких целей используют сплавы цинка с повышенным	ПК-1
содержанием алюминия?	
а) Для создания антикоррозийных покрытий	
б) Для использования в условиях повышенной температуры	
в) Для получения отливок	
г) Для изготовления конструкционных материалов	
14. При пирометаллургической переработке цинкового концентрата	ПК-1
одним из продуктов является Пусьера. Что это такое?	
а) Продукт конденсации паров	
б) Цинк, содержащий примеси от 1 до 5%	
в) Отходящие газы	
ој отлодищие газы	

г) Твердый остаток после дистилляции	
15. Приведите реакцию осаждения, протекающей при	ПК-1
восстановительной плавке:	
a) $MeS + Fe = Me + FeS$	
6) $Cu_2O + FeS = Cu_2S + FeO$	
B) $MeO + CO = Me + CO_2$	
Γ) $2Cu + PbS = Cu_2S + Pb$	
16. Почему нельзя в процессе восстановительной плавки	ПК-1
восстанавливать FeO до Fe?	
а) Железо имеет температуру плавления меньше, чем у свинца	
б) FeO не восстанавливается оксидом углерода	
в) Железо реагирует со свинцом	
г) Железо нерастворимо в свинце	
17. Задачей обжига цинковых концентратов является:	ПК-1
а) перевести сульфиды цинка в оксиды	
б) перевести оксиды цинка в сульфиды	
в) избавится от пустой породы	
г) разбавить кислотой	
18. По какой реакции при обжиге цинковых концентратов	ПК-1
окисляются сульфиды железа:	
a) $2\text{FeS}_2 + 5.5 \text{ O}_2 = \text{Fe}_2\text{O}_3 + 4 \text{ SO}_2$	
6) $2\text{FeS} + O_2 = \text{Fe}_2\text{O}_3 + 4\text{SO}_2$	
B) $FeS_2 + O_2 = Fe_2O_3 + SO_2$	
, – – – – – – –	
Γ) 2FeS ₂ + 5,5 O ₂ = Fe ₃ O ₄ + 4 SO ₃ 19. Каким способом выполняется выплавка и очистка цинковых	ПК-1
концентратов?	
а) Восстановительным	
б) Электролитическим	
в) Окислительным	
г) Нейтрализацией	ПК-1
20. От чего очищают цинк методом ликвации?	11K-1
а) Свинца и железа	
б) Свинца и его соединений	
в) Железа и его соединений	
г) Железа и его оксидов	THE 1
21. На чем основано гидролитическое осаждение примесей?	ПК-1
а) На образование нерастворимого осадка соли	
б) На разложении водой соли с образованием нерастворимых	
гидроксидов	
в) На образование газообразных продуктов	
г) На разложение воды солью с образованием нерастворимых	
гидроксидов	
22. Каково процентное содержание элементов в соединении	ПК-1
$PbCl_2 \cdot PbCO_3$?	
a) Pb=75,96%; Cl=13,03%; C=8,81%; O=2,20%	
б) Pb=75,96%; Cl=13,03%; C=2,20%; О=8,81%	

- в) Pb=13,03%; Cl=75,96%; C=2,20%; O=8,81% г) Pb=75,96%; Cl=2,20%; C=13,03%; O=8,81% 23. Каково процентное содержание элементов в соединении ZnO·2ZnSO₄?
 - a) Zn=48,39%; O=35,73%; S=15,88%
 - б) Zn=35,73%; O=48,39%; S=15,88%
 - в) Zn=15,88%; O=35,73%; S=48,39%
 - Γ) Zn=35,73%; O=15,88%; S=48,39%

24. Химический состав концентрата

<u> </u>	24. Химический состав концентрата									
Pb	Zn	Cu	Fe	S	SiO_2	CaO	Al_2O_3	Прочие		
40,0	8,4	2,7	8,8	19,8	3,6	3,2	2,8	10,7		

Концентрат представлен следующим *минералогическим* составом: Свинец содержится в галените (PbS);

Цинк – в сфалерите (ZnS);

Медь — в виде халькопирита ($CuFeS_2$) и ковеллина (CuS) в соотношении 1:1;

Остальное железо — в пирите (FeS_2) и пирротине (Fe_7S_8) в соотношении 2:1.

Пустая порода состоит из кварца (SiO_2), известняка ($CaCO_3$), глинозема(Al_2O_3).

Соединение						Содер	жание ко	мпонентов,	КГ		
	Pb	Zn	Cu	Fe	S	CaO	CO ₂	SiO ₂	Al ₂ O ₃	Прочие	ВСЕГО
PbS	40,0				?						?
ZnS		8,4			?						?
CuFeS ₂			1,35	1,18	1,36						3,89
CuS			1,35		0,68						2,03
Fe ₇ S ₈				2,54	1,66						4,20
FeS ₂				5,08	5,83						10,91
CaCO ₃						3,2	2,51				5,71
SiO ₂								3,6			3,6
Al ₂ O ₃									2,8		2,8
Прочие										8,15	8,15
ИТОГО	40,0	8,4	2,7	8,8	?	3,2	2,51	3,6	2,8	8,15	100,00

Вычислите содержание компонентов и минералов. Ответ привести с точностью до 0.01%.

- а) S в: PbS=46,15; ZnS =11,5; сумма: PbS =92,15; ZnS =21; S=33
- б) S в: PbS=6,18; ZnS =4,13; сумма: PbS =46,18; ZnS =12,53; S=19,8
- в) S в: PbS=50,1; ZnS =15,5; сумма: PbS =96,1; ZnS =25; S=25
- г) S в: PbS=7,11; ZnS =4,68; сумма: PbS =20,36; ZnS =14,18; S=21

25. Химический состав свинцового агломерата, %:

42 Pb; 7,0 Zn; 3,0 Cu; 15,0 Fe; 2,2 S; 9,5 SiO₂; 4,5 CaO; 4,3Al₂O₃; Прочие 12,5

Минералогический анализ агломерата показал, что отношение сульфидной серы к сульфатной равно 4:1.

Сульфидная сера связана в агломерате:

- с цинком (50%);
- со свинцом (25%);
- с медью (25%).

ПК-1

Сульфатная сера связана

- с кальцием (50%);
- со свинцом (25%);
- с цинком (25%).

 $Me\partial b$ в агломерате присутствует в виде соединений халькозина и оксида меди (I).

Железо в агломерате представлено:

- магнетитом на 50%;
- оксидом железа (III) -на 25%;
- в виде феррита свинца на 25%.

Свинец (50% от общего его содержания) находится в виде силиката, а остальной свинец, не связанный в сульфидную, сульфатную, силикатную и ферритную формы, присутствует в агломерате в виде свободного оксида свинца.

Остальные металлы (цинк, кальций, кремний и алюминий) находится в агломерате в виде свободных оксидов.

Соединени						Содержані	ие компонен	тов, кг				
Я	Pb	Zn	Cu	Fe	S_s	S_{SO_4}	0	SiO ₂	CaO	Al ₂ O ₃	Про чие	Всего
PbO	?						0,81					?
PbO·SiO ₂	21,0						1,62	6,08				28,7
PbO·Fe ₂ O ₃	6,96			3,75			2,15					12,86
PbSO ₄	0,71					0,11	0,22					1,04
PbS	?				0,44							?
ZnO		4,98					1,22					6,20
ZnS		1,80			0,88							2,68
ZnSO ₄		0,22				0,11	0,22					0,55
Cu ₂ S			1,75		0,44							2,19
Cu ₂ O			1,25				0,16					1,41
Fe ₃ O ₄				7,5			2,87					10,37
Fe_2O_3				3,75			1,61					5,36
CaO									4,12			4,12
CaSO ₄						0,22	0,33		0,38			0,93
SiO ₂								3,42				3,42
Al_2O_3										4,3		4,3
Прочие											1,29	1,29
ИТОГО	?	7,0	3,00	15,0	1,76	0,44	11,21	9,5	4,5	4,3	1,29	100,0

- a) Pb в: PbS=46,15; PbO =11,5; сумма: PbS =92,15; PbO =21; Pb =33
- б) Pb в: PbS=4,52; PbO =6,18; сумма: PbS =50,52; PbO =15,68; Pb =4
- в) Pb в: PbS=50,1; PbO =15,5; сумма: PbS =96,1; PbO =25; Pb =25
- Γ) Pb в: PbS=10,48; PbO =2,85; сумма: PbS =10,92; PbO =3,66; Pb =42

Вариант 4	
1. Кек – это:	ПК-1
а) кусковой продукт	
б) обожженный кусковой агломерат	
в) пустая порода	
г) остаток от кислотного выщелачивания	
2. Минерал галенит имеет формулу:	ПК-1
a) ZnCO ₃	
б) PbCO ₃	
в) ZnS	

r) PbS	
3. Как иначе называют обжиг цинковых концентратов?	ПК-1
а) Сульфатизирующий обжиг	
б) Кислый обжиг	
в) Окислительный обжиг	
г) Агломерационный обжиг	
4. Продуктами шахтной плавки являются: шлак, черновой свинец,	ПК-1
штейн и	
а) Пыль	
б) Агломерат	
в) Пустая порода	
г) Газ	
5. Электроосаждение цинка используют для:	ПК-1
а) Перемешивания цинка с флюсом	
б) Выделения цинка из очищенного раствора	
в) Очистки раствора от примесей	
г) Электрорафинирования цинка	
6. В основе гидрометаллургического метода переработки цинковых	ПК-1
концентратов заложено:	
а) Выщелачивание оксида цинка из обожжённого цинкового	
концентрата разбавленной серной кислотой	
б) Выщелачивание оксида цинка из обожжённого цинкового	
концентрата концентрированной серной кислотой	
в) Выщелачивание оксида цинка из обожжённого цинкового	
концентрата разбавленной соляной кислотой	
г) Выщелачивание оксида цинка из обожжённого цинкового	
концентрата концентрированной соляной кислотой	
7. На чем основано грубое обезмеживание свинца?	ПК-1
а) На большем сродстве меди к сере, чем у свинца	
б) На большем сродстве меди к кислороду, чем у свинца	
в) На уменьшении растворимости меди в свинце при понижении	
температуры	
г) На отделении цинка от примесей	
8. К чему приводит слишком большое количество сульфидов в	ПК-1
шихте агломерирующего обжига свинцового концентрата?	
а) Понижается температура обжига	
б) Изменяется плотность шихты	
в) Спекание происходит быстро задолго до полного окисления	
сульфидов	
г) Ускоряются химические реакции	
9. Каким требованиям должен удовлетворять агломерат для	ПК-1
последующей плавки в шахтной печи?	
а) Быть хрупким	
б) Иметь высокую плотность	
в) Иметь низкую температуру плавления	

г) Соответствовать по химическому составу (в основном должны	
быть оксиды)	
10. Какой из данных оксидов свинца более устойчив при	ПК-1
температуре более 600°С?	
a) Pb ₂ O	
6) Pb ₂ O ₃	
в) Pb ₃ O ₄	
r) PbO	
11. Чем отличается обжиг свинцовых концентратов (для	ПК-1
последующей шахтной плавки) от цинковых концентратов (для	
выщелачивания)?	
а) Для выщелачивания необходима большая поверхность	
б) Для выщелачивания необходим окускованный пористый	
продукт	
в) При обжиге свинцовых концентратов требуется более высокая	
температура	
г) При обжиге цинкового концентрата нужна большая	
температура	
12. Оксид цинка является:	ПК-1
а) Кислотным	
б) Основным	
в) Амфотерным	
г) Легкоплавким	
13. Для каких целей используют сплавы цинка с повышенным	ПК-1
содержанием алюминия?	
а) Для изготовления конструкционных материалов	
б) Для создания антикоррозийных покрытий	
в) Для использования в условиях повышенной температуры	
г) Для обработки давлением	
14. Приведите реакцию сульфидирования, протекающей при	ПК-1
восстановительной плавке.	
a) $MeS + Fe = Me + FeS$	
6) CO2+ C = 2CO	
$B) MeO + CO = Me + CO_2$	
$\Gamma) 2Cu + PbS = Cu2S + Pb$	
15. При пирометаллургической переработке цинкового концентрата,	ПК-1
одним из продуктов является Черновой цинк. Что это такое?	
а) Продукт конденсации паров	
б) Цинк, содержащий примеси от 1 до 5%	
в) Отходящие газы	
г) Твердый остаток после дистилляции	
16. Почему нельзя в процессе восстановительной плавки	ПК-1
восстанавливать FeO до Fe?	
а) Железо реагирует со свинцом	
б) Железо имеет температуру плавления меньше, чем у свинца	
в) Железо имеет температуру плавления выше, чем у свинца	

г) FeO не восстанавливается оксидом углерода	
17. Основной реакцией, протекающей при обжиге цинковых	ПК-1
концентратов, является:	
a) $ZnS + O_2 = ZnO + 1,5SO_2 + Q$	
6) $ZnS + 2O_2 = ZnO + 2SO_2 + Q$	
B) $ZnS + 2.5 O_2 = 2ZnO + SO_2 + Q$	
Γ) ZnS + 1,5 O_2 = ZnO + SO_2 + Q	
18. По какой реакции при обжиге цинковых концентратов	ПК-1
окисляются сульфиды железа?	
a) $FeS + O_2 = FeSO_4 + SO_2$	
6) FeS + 3O2 = FeSO4 + 4SO2	
B) $FeS_2 + O_2 = Fe_2O_3 + SO_2$	
Γ) 2FeS ₂ + 5,5 O ₂ = Fe ₃ O ₄ + 4 SO ₃	
19. Какой из следующих способов относится к рафинированию	ПК-1
цинка?	
а) Сульфидирование	
б) Окисление	
в) Раскиесление	
г) Дистилляция	
20. Какая характеристика не соответствует способу обжига	ПК-1
цинкового концентрата в печи кипящего слоя (КС)?	
а) Высокая производительность	
б) Стабильный режим обжига	
в) Высокое качество получаемого огарка	
г) Небольшая длительность компании печей КС	
21. С какой целью в химический метод рафинирования добавляет	ПК-1
натрий?	
а) Более полная очистка от железа	
б) Более полная очистка от всех примесей	
в) Более полная очистка от свинца	
г) Более полная очистка от оксидов	
22. Каково процентное содержание элементов в соединении ZnS?	ПК-1
a) Zn=76,01%; S=23,99%	
б) Zn=84,32%; S=15,68%	
в) Zn=32,09%; S=67,01%	
г) Zn=67,01%; S=32,09%	
23. Каково процентное содержание элементов в соединении ZnSO ₄ ?	ПК-1
a) Zn=19,88%; S=40,37%; O=39,75%	
б) Zn=40,37%; S=39,75%; O=19,88%	
в) Zn=40,37%; S=19,88%; O=39,75%	
г) Zn=39,75%; S=19,88%; O=40,37%	

24. Химический состав концентрата

Pb	Zn	Cu	Fe	S	SiO ₂	CaO	Al_2O_3	Прочие
40,0	8,4	2,7	8,8	19,8	3,6	3,2	2,8	10,7

Концентрат представлен следующим минералогическим составом:

Свинец содержится в галените (PbS);

Цинк – в сфалерите (ZnS);

Медь — в виде халькопирита ($CuFeS_2$) и ковеллина (CuS) в соотношении 1:1;

Остальное железо — в пирите (FeS_2) и пирротине (Fe_7S_8) в соотношении 2:1.

Пустая порода состоит из кварца (SiO_2) , известняка $(CaCO_3)$, глинозема (Al_2O_3) .

Соединение					Содержа	ание ком	понентов,	КΓ			
	Pb	Zn	Cu	Fe	S	CaO	CO ₂	SiO ₂	Al ₂ O ₃	Про чие	ВСЕГО
PbS	40,0				6,2						46,2
ZnS		8,4			4,11						12,51
CuFeS ₂			?	1,18	1,36						?
CuS			?		0,68						?
Fe ₇ S ₈				2,54	1,66						4,20
FeS ₂				5,08	5,83						10,91
CaCO ₃						3,2	2,51				5,71
SiO ₂								3,6			3,6
Al ₂ O ₃									2,8		2,8
Прочие										8,15	8,15
ИТОГО	40,0	8,4	?	8,8	19,8	3,2	2,51	3,6	2,8	8,15	100,00

Вычислите содержание компонентов и минералов. Ответ привести с точностью до 0.01%.

- а) Cu в: CuFeS $_2$ =1,35; CuS =1,35; сумма: CuFeS $_2$ =3,89; CuS =2,03; Cu=2,7
- б) Cu в: CuFeS $_2$ =1,7; CuS =1,7; сумма: CuFeS $_2$ =4,53; CuS =2,45; Cu=3,4
- в) Cu в: CuFeS $_2$ =1,3; CuS =1,3; сумма: CuFeS $_2$ =4,13; CuS =2,05; Cu=2,6
- Γ) Cu в: CuFeS₂ =0,7; CuS =0,7; сумма: CuFeS₂ =3,53; CuS =1,45; Cu=1,4

25. Химический состав свинцового агломерата, %:

 $38,5 \; Pb; \; 7,8 \; Zn; \; 2,5 \; Cu; \; 14,5 \; Fe; \; 1,8 \; S; \; 9,2 \; SiO_2; \; 4,4 \; CaO; \; 2,6 \; Al_2O_3; \; 4,4 \; CaO; \; 2,6 \;$

Прочие 18,7

Минералогический анализ агломерата показал, что отношение сульфидной серы к сульфатной равно 4:1.

Сульфидная сера связана в агломерате:

- с цинком (50%);
- со свинцом (25%);
- с медью (25%).

Сульфатная сера связана

- с кальцием (50%);
- со свинцом (25%);
- с цинком (25%).

 $Me\partial b$ в агломерате присутствует в виде соединений халькозина и оксида меди (I).

Железо в агломерате представлено:

- магнетитом на 50%;
- оксидом железа (III) -на 25%;
- в виде феррита свинца на 25%.

Свинец (50% от общего его содержания) находится в виде силиката, а остальной свинец, не связанный в сульфидную, сульфатную, силикатную и ферритную формы, присутствует в агломерате в виде свободного оксида свинца.

Остальные металлы (цинк, кальций, кремний и алюминий) находится в агломерате в виде свободных оксидов.

Соединени					Сод	ержание	компонен	нтов, кг				
Я	Pb	Zn	Cu	Fe	S_s	S_{SO_4}	O	SiO ₂	CaO	Al ₂ O ₃	Про чие	Всего
PbO	9,63						0,74					10,37
PbO·SiO ₂	19,25						1,49	5,57				26,31
PbO·Fe ₂ O ₃	6,71			3,625			2,07					12,40
PbSO ₄	0,58					0,09	0,18					0,85
PbS	2,33				0,36							2,69
ZnO		6,15					1,51					7,66
ZnS		1,47			0,72							2,19
ZnSO ₄		0,18				0,09	0,18					0,45
Cu ₂ S			1,44		0,36							1,8
Cu ₂ O			1,06				0,13					1,19
Fe ₃ O ₄				7,25			?					?
Fe ₂ O ₃				3,625			?					?
CaO									4,08			4,08
CaSO ₄						0,18	0,27		0,32			0,77
SiO ₂								3,63				3,63
Al_2O_3										2,6		2,6
Прочие											7,82	7,82
Итого	38,5	7,8	2,5	14,5	1,44	0,36	?	9,2	4,4	2,6	7,82	100,0

- a) O B: $Fe_3O_4=1,74$; $Fe_2O_3=0,52$; cymma: $Fe_3O_4=8,84$; $Fe_2O_3=4,36$; O =24
- б) О в: $Fe_3O_4=0,52$; $Fe_2O_3=1,74$; сумма: $Fe_3O_4=10,19$; $Fe_2O_3=2,36$; О =13,22
- в) О в: $Fe_3O_4=1,7$; $Fe_2O_3=1,7$; сумма: $Fe_3O_4=3,84$; $Fe_2O_3=1,86$; O =2,4
- г) О в: $Fe_3O_4=2,76$; $Fe_2O_3=1,55$; сумма: $Fe_3O_4=10,01$; $Fe_2O_3=5,17$; О =10,88

ПК-1
ПК-1
_

3. В шихте агломерирующего обжига содержится серы:	ПК-1
a) 10-15%	
б) 1-5%	
в) 1-2%	
г) 6-8%	
4. В основе обжига цинковых концентратов лежат реакции:	ПК-1
а) Сульфидирования	
б) Окисления	
в) Восстановления	
г) Нитрирования	
5. Для того чтобы снизить содержание серы в агломерате	ПК-1
существуют два способа. Какой из следующих пунктов подходит?	
а) Вести обжиг в две стадии	
б) Убавить объем необходимого агломерата	
в) Добавить больше флюса	
г) Вести нагревание	
6. Наиболее распространенным способом получения свинца	ПК-1
является:	
а) Горновая плавка	
б) Шахтная плавка	
в) Восстановительная плавка	
г) Окислительная плавка	
7. На чем основано тонкое обезмеживание свинца?	ПК-1
а) На большем сродстве меди к сере, чем у свинца	
б) На большем сродстве меди к кислороду, чем у свинца	
в) На уменьшении растворимости меди в свинце при понижении	
температуры	
г) На отделении цинка от примесей	
8. К чему приводит слишком большое количество сульфидов в	ПК-1
шихте агломерирующего обжига свинцового концентрата?	
а) Ускоряются химические реакции	
б) Изменяется плотность шихты	
в) Понижается температура обжига	
г) Полученный агломерат содержит много серы	
9. Продукт агломерирующего обжига, при плавке которого в	ПК-1
шахтных печах не требуется добавка флюсов – это:	
а) Кусковой продукт	
б) Самоплавкий агломерат	
в) Обожженный концентрат	
г) Самоплавкий шлак	
10. Взаимодействие свинца с элементами-аналогами (германий,	ПК-1
олово) не образуют между собой твердых растворов, а дают:	
а) Эвтектику	
б) Снижение плотности	
в) Очень летучие соединения	
г) Повышение температуры	

сульфатов не желательно? а) Сульфат взаимодействует с восстановителем с образованием свинца б) Сульфат свинца не растворяется в свинце в) Сульфат свинца повышает температуру плавления г) Сульфат не взаимодействует с восстановителем с образованием свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) МеО + CO = Me + CO ₂ г) CO ₂ + C = 2CO	ПК-1
в) Она повышает газопроницаемость г) Повышает температуру обжига 12. Почему при обжиге свинцовых концентратов образование сульфатов не желательно? а) Сульфат взаимодействует с восстановителем с образованием свинца б) Сульфат свинца не растворяется в свинце в) Сульфат свинца повышает температуру плавления г) Сульфат не взаимодействует с восстановителем с образованием свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) МеО + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
т) Повышает температуру обжига 12. Почему при обжиге свинцовых концентратов образование сульфатов не желательно? а) Сульфат взаимодействует с восстановителем с образованием свинца б) Сульфат свинца не растворяется в свинце в) Сульфат свинца повышает температуру плавления г) Сульфат не взаимодействует с восстановителем с образованием свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Рb(NO₃) б) Оксида РbО в) Силикатов mPbO · nSiO₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O₂ = CO₂ б) 2C + O₂ = 2CO в) МеО + CO = Me + CO₂ г) CO₂+ C = 2CO	
12. Почему при обжиге свинцовых концентратов образование сульфатов не желательно? а) Сульфат взаимодействует с восстановителем с образованием свинца б) Сульфат свинца не растворяется в свинце в) Сульфат свинца повышает температуру плавления г) Сульфат не взаимодействует с восстановителем с образованием свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) МеО + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
сульфатов не желательно? а) Сульфат взаимодействует с восстановителем с образованием свинца б) Сульфат свинца не растворяется в свинце в) Сульфат свинца повышает температуру плавления г) Сульфат не взаимодействует с восстановителем с образованием свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) МеО + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
а) Сульфат взаимодействует с восстановителем с образованием свинца б) Сульфат свинца не растворяется в свинце в) Сульфат свинца повышает температуру плавления г) Сульфат не взаимодействует с восстановителем с образованием свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) МеО + CO = Me + CO ₂ г) CO ₂ + C = 2CO	ПК-1
свинца б) Сульфат свинца не растворяется в свинце в) Сульфат свинца повышает температуру плавления г) Сульфат не взаимодействует с восстановителем с образованием свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) МеО + CO = Me + CO ₂ г) CO ₂ + C = 2CO	ΠK-1
в) Сульфат свинца повышает температуру плавления г) Сульфат не взаимодействует с восстановителем с образованием свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. a) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) МеО + CO = Me + CO ₂ г) CO ₂ + C = 2CO	ПК-1
г) Сульфат не взаимодействует с восстановителем с образованием свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) МеО + CO = Me + CO ₂ г) CO ₂ + C = 2CO	<u>ПК-1</u>
свинца 13. Сплавы цинка с марганцем обладают: а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO₃) б) Оксида PbO в) Силикатов mPbO · nSiO₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O₂ = CO₂ б) 2C + O₂ = 2CO в) МеО + CO = Me + CO₂ г) CO₂+ C = 2CO	ПК-1
13. Сплавы цинка с марганцем обладают: I а) Повышенной прочностью 6) Легкостью в) Жидкотекучестью 7) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? 1 а) Нитратов свинца Pb(NO₃) 6) Оксида PbO в) Силикатов mPbO · nSiO₂ 7) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. 1 а) C+O₂ = CO₂ 6) 2C + O₂= 2CO в) МеО + CO = Me + CO₂ 7) CO₂+ C = 2CO	ПК-1
а) Повышенной прочностью б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) МеО + CO = Me + CO ₂ г) CO ₂ + C = 2CO	ПК-1
б) Легкостью в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) MeO + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
в) Жидкотекучестью г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) MeO + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
г) Сверхпластичностью 14. В виде каких соединений свинец не может присутствовать в агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) MeO + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
14. В виде каких соединений свинец не может присутствовать в агломерате? I а) Нитратов свинца Pb(NO ₃) 6) Оксида PbO в) Силикатов mPbO · nSiO ₂ 7) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. I а) C+O ₂ = CO ₂ 6) 2C + O ₂ = 2CO в) MeO + CO = Me + CO ₂ 7) CO ₂ + C = 2CO	
агломерате? а) Нитратов свинца Pb(NO ₃) б) Оксида PbO в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) MeO + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
 а) Нитратов свинца Pb(NO₃) б) Оксида PbO в) Силикатов mPbO · nSiO₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O₂ = CO₂ б) 2C + O₂= 2CO в) MeO + CO = Me + CO₂ г) CO₂+ C = 2CO 	ПК-1
 б) Оксида РbО в) Силикатов mPbO · nSiO₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O₂ = CO₂ б) 2C + O₂= 2CO в) MeO + CO = Me + CO₂ г) CO₂+ C = 2CO 	
в) Силикатов mPbO · nSiO ₂ г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) MeO + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
г) Свободного металла 15. Какая реакция не является реакцией горения углеродистого твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) MeO + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
15. Какая реакция не является реакцией горения углеродистого І твердого топлива. а) C+O ₂ = CO ₂ б) 2C + O ₂ = 2CO в) MeO + CO = Me + CO ₂ г) CO ₂ + C = 2CO в	
твердого топлива. a) $C+O_2=CO_2$ б) $2C+O_2=2CO$ в) $MeO+CO=Me+CO_2$ г) $CO_2+C=2CO$	
a) $C+O_2 = CO_2$ 6) $2C + O_2 = 2CO$ B) $MeO + CO = Me + CO_2$ Γ) $CO_2 + C = 2CO$	ПК-1
б) 2C + O ₂ = 2CO в) MeO + CO = Me + CO ₂ г) CO ₂ + C = 2CO	
B) $MeO + CO = Me + CO_2$ Γ) $CO_2 + C = 2CO$	
Γ) $CO_2 + C = 2CO$	
,	
4 4 77	TTC 1
10. The femry members is inperfected become instability in instability in the contract of the	ПК-1
восстанавливать FeO до Fe?	
а) Железо не расплавляется в процессе	
б) FeO не восстанавливается оксидом углерода	
в) Железо имеет температуру плавления меньше, чем у свинца	
г) Железо реагирует со свинцом	ПК-1
27. The femily input committee Am American copuses summer 2005 of	1IK-1
нежелательно?	
a) ZnSO ₄ не восстанавливается до ZnS	
б) ZnSO ₄ переходит в оксид	
в) ZnSO ₄ восстанавливается до ZnS	
г) ZnSO ₄ не диссоциирует	
200 Amino Ban non Amino and Amino an	<u>пи 1</u>
а) Превращения оксидов в сульфиды	ПК-1
б) Превращения сульфидов в сульфаты в) Превращения оксидов в гидроксиды	ПК-1

г) Превращения сульфидов в оксиды	
19. Какой из следующих способов относится к рафинированию	ПК-1
цинка?	
а) Раскиеслительнное	
б) Сульфидированное	
в) Химическое	
г) Окисленное	
20. Во сколько стадий проводится ректификационная очистка	ПК-1
свинца?	
a) 5	
6) 4	
в) 3	
r) 2	ПК-1
21. Какая характеристика не соответствует способу обжига	11K-1
цинкового концентрата в печи кипящего слоя (КС)?	
а) Упрощенная подготовка шихты к обжигу б) Низкая концентрация сернистого ангидрида в отходящих газах	
в) Простота обслуживания и большая длительность компании	
печей КС	
г) Автогенность процесса	
22. Каково процентное содержание элементов в соединении ZnO?	ПК-1
а) Zn=19,75%; O=80,25%	1111 1
б) Zn=80,25%; O=19,75%	
в) Zn=46,02%; О=53,78%	
г) Zn=53,78%; O=46,02%	
23. Каково процентное содержание элементов в соединении Zn ₂ SiO ₄ ?	ПК-1
a) Zn=58,56%; Si=12,61%; O=28,83%	
б) Zn=12,61%; Si=58,56%; O=28,83%	
в) Zn=28,83%; Si=12,61%; O=58,56%	
г) Zn=58,56%; Si=28,83%; O=12,61%	
24. Химический состав концентрата	ПК-1
Pb Zn Cu Fe S SiO ₂ CaO Al ₂ O ₃ Прочие 40,0 8,4 2,7 8,8 19,8 3,6 3,2 2,8 10,7	
Концентрат представлен следующим минералогическим составом:	
Свинец содержится в галените (PbS);	
Цинк – в сфалерите (ZnS);	
Медь – в виде халькопирита (CuFeS ₂) и ковеллина (CuS) в соотношении	
1:1;	
Остальное железо – в пирите (FeS_2) и пирротине (Fe_7S_8) в соотношении	
2:1.	
Пустая порода состоит из кварца (SiO_2) , известняка $(CaCO_3)$,	
глинозема(Al_2O_3).	
Соединение Содержание компонентов, кг	
Pb Zn Cu Fe S CaO CO ₂ SiO ₂ Al ₂ O ₃ Прочие ВСЕГО	
PbS 40,0 6,2 46,2	

ZnS		8,4			4,11						12,51
CuFeS ₂			1,35	1,18	1,36						3,89
CuS			1,35		0,68						2,03
Fe ₇ S ₈				?	1,66						?
FeS ₂				?	5,83						?
CaCO ₃						3,2	2,51				5,71
SiO ₂								3,6			3,6
Al_2O_3									2,8		2,8
Прочие										8,15	8,15
ИТОГО	40,0	8,4	2,7	?	19,8	3,2	2,51	3,6	2,8	8,15	100,00

Вычислите содержание компонентов и минералов. Ответ привести с точностью до 0.01%.

- a) Fe b Fe₇S₈=2,54; FeS₂ =5,08; cymma: Fe₇S₈ =4,2; FeS₂ =10,91; Fe =8,8
- б) Fe в: $Fe_7S_8 = 5.08$; $FeS_2 = 2.54$; сумма: $Fe_7S_8 = 10.91$; $FeS_2 = 4.2$; Fe = 10.4
- в) Fe в: $Fe_7S_8 = 13,1$; $FeS_2 = 1,4$; сумма: $Fe_7S_8 = 14,6$; $FeS_2 = 5,7$; Fe = 7,6
- Γ) Fe B: $Fe_7S_8 = 0.7$; $FeS_2 = 0.7$; cymma: $Fe_7S_8 = 3.53$; $FeS_2 = 1.45$; Fe = 9.4
 - 25. Химический состав свинцового агломерата, %:

38,5 Pb; 7,8 Zn; 2,5 Cu; 14,5Fe; 1,8 S; 9,2 SiO₂; 4,4 CaO; 2,6 Al₂O₃;

Прочие 18,7

Минералогический анализ агломерата показал, что отношение сульфидной серы к сульфатной равно 4:1.

Сульфидная сера связана в агломерате:

- с цинком (50%);
- со свинцом (25%);
- с медью (25%).

Сульфатная сера связана

- с кальцием (50%);
- со свинцом (25%);
- с цинком (25%).

 $Me\partial b$ в агломерате присутствует в виде соединений халькозина и оксида меди (I).

Железо в агломерате представлено:

- магнетитом на 50%;
- оксидом железа (III) -на 25%;
- в виде феррита свинца на 25%.

Свинец (50% от общего его содержания) находится в виде силиката, а остальной свинец, не связанный в сульфидную, сульфатную, силикатную и ферритную формы, присутствует в агломерате в виде свободного оксида свинца.

Остальные металлы (цинк, кальций, кремний и алюминий) находится в агломерате в виде свободных оксидов.

Соедине	Содержание компонентов, кг											
ния	Pb	Zn	Cu	Fe	S_s	S_{SO_4}	О	SiO ₂	CaO	Al ₂ O ₃	Про чие	Bcero
PbO	9,63						0,74					10,37
PbO·SiO ₂	19,25						1,49	5,57				26,31
PbO·Fe ₂	6,71			?			2,07					?
O_3												
PbSO ₄	0,58					0,09	0,18					0,85

PbS	?				0,36							?
ZnO		6,15					1,51					7,66
ZnS		1,47			0,72							2,19
ZnSO ₄		0,18				0,09	0,18					0,45
Cu ₂ S			1,44		0,36							1,8
Cu ₂ O			1,06				0,13					1,19
Fe ₃ O ₄				7,25			2,76					10,01
Fe ₂ O ₃				3,625			1,55					5,18
CaO									4,08			4,08
CaSO ₄						0,18	0,27		0,32			0,77
SiO_2								3,63				3,63
Al_2O_3										2,6		2,6
Прочие											7,82	7,82
Итого	?	7,8	2,5	?	1,44	0,36	10,88	9,2	4,4	2,6	7,82	100,0

- a) Pb в PbS =1,7; Fe в PbO·Fe₂O₃ =1,7; сумма: PbS =3,84; PbO·Fe₂O₃ =1,86; Pb =2,4; Fe
- б) Pb в: PbS =0,4; Fe в PbO·Fe₂O₃ =0,4; сумма: PbS =0,84; PbO·Fe₂O₃ =0,56; Pb =0,8; Fe
- в) Pb в: PbS =2,33; Fe в PbO·Fe₂O₃ =3,625; сумма: PbS =2,69; PbO·Fe₂O₃ =12,4; Pb =38,5; Fe=14,5
- г) Pb в: PbS =1,1; Fe в PbO·Fe₂O₃ =1,1; сумма: PbS =1,54; PbO·Fe₂O₃ =1,26; Pb =2,2; Fe