Документ подписан простой электронной подписью
Информация о владельце: Министерство науки и выс шего образования РФ
ФИО: Игнатенко Виталий Иванович
Должность: Проректор по образовательное и молодежной политике
Дата подписания: 14.10.2025 14:48:36
Учреждение высшего образования
Уникальный прогосударственный университет им. Н. М. Федоровского» а49ае343аf5448d45d7e3e1e499659da8109ba78

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

«Механика разрушений строительных материалов и изделий»

Группа научной специальности: 2.1 Строительство и архитектура Научная специальность: 2.1.5 Строительные материалы и изделия	
Уровень образования: аспирантура	
Кафедра «Строительство и теплогазоводоснабжение» наименование кафедры	
Разработчик ФОС:	
Профессор, к.т.н., доцент.	Елесин М.А.
(должность, степень, ученое звание) (подпись)	(ОИФ)
Оценочные материалы по дисциплине рассмотрены и одобрены на за протокол №от « »202 г.	седании кафедры,
Заведующий кафедрой к.т.н., профессор Елесин М.А.	

Перечень планируемых результатов обучения по дисциплине (модулю),

соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Паспорт фонда оценочных средств

Контролируемые разделы (темы)	разделы (темы) оценочного		
дисциплины	средства		
Решения правительства	Список литературных	Составление	
Российской Федерации в	источников по	систематизированного списка	
области капитального	тематике, тестовые	использованных источников,	
строительства.	задания	решение теста	
Модернизация,			
техническое			
перевооружение и			
реконструкция			
строительных объектов. Техническое			
перевооружение, капитальный ремонт и			
реконструкция			
предприятий			
Норильского района.			
Состояние вопроса			
Северная климатическая	Список литературных	Составление	
зона. Параметры	источников по	систематизированного списка	
климата. Годовой ход	тематике, тестовые	использованных источников,	
прямой солнечной	задания	решение теста	
радиации, температура и	задання	pemenne reera	
влажность воздуха.			
Аппроксимация			
Морозостойкость.	Список литературных	Составление	
Механизм развития	источников по	систематизированного списка	
повреждений в	тематике, тестовые	использованных источников,	
каменных материалах	задания	решение теста	
при низких		1	
отрицательных			
температурах			
Методы оценки			
морозостойкости			
строительных			
конструкций. Резюме.			
Пути повышения			
долговечности			
ограждающих каменных			
конструкций			
Проницаемость			
коррозии.			
Закономерности			
коррозии стальных			
конструкций зданий и			

сооружений.		
Средства защиты		
стальных и		
алюминиевых		
конструкций промзданий		
и сооружений от		
агрессивных		
воздействий.		
Лакокрасочные		
материалы. Эмаль КОРС.		
Методы защиты		
железобетонных		
конструкций промзданий		
и сооружений от		
агрессивных		
воздействий. Добавки		
для улучшения		
эксплуатационных		
качеств бетона		
Экзамен, зачет	Решение всех тестовых	Решение всех тестовых заданий по
	заданий	темам

1 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 2).

	1		Шкала оценивания	Критерии оценивания		
	Промежуточная аттестация в форме «Зачет»					
	Тестовые задания	В течении	от 0 до 5	Зачет/Незачет		
		обучения по	баллов			
		дисциплине				
	ИТОГО:	-	баллов	-		
Критерии оценки результатов обучения по дисциплине:						
Пороговый (минимальный) уровень для аттестации в форме						
зачета	зачета – 75 % от максимально возможной суммы баллов					

	Наименование оценочного средства	Сроки выполнения	Шкала оценивания	Критерии оценивания
Промежуточная аттестация в о			форме «Экзамен»	
	Тестовые задания	В течении обучения по дисциплине	от 0 до 5 баллов	Зачет/Незачет
Теку	/щий контроль:	-	баллов	-
	«Экзамен»			

	Наименование	Сроки	Шкала	Критерии
	оценочного средства	выполнения	оценивания	оценивания
Экза	амен:	-	баллов	-
	ИТОГО:	-	баллов	-

Критерии оценки результатов обучения по дисциплине:

- 0 64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85 100 % от максимально возможной суммы баллов «отлично»

(высокий (максимальный) уровень)

- 2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности характеризующие процесс формирования компетенций в ходе освоения образовательной программы
- 2.1 Задания для текущего контроля успеваемости

Для очной формы обучения Задания для текущего контроля и сдачи зачета с оценкой по дисциплине

ОЦЕНОЧНОЕ СРЕДСТВО

(тестирование)

- 1. Какой анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав
- а) качественный;
- б) количественный;
- в) молекулярный;
- г) функциональный.
- 2. Какой анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ
- а) качественный;
- б) количественный;
- в) молекулярный;
- г) функциональный.
- 3. Какой анализ называется анализом мокрым путем?
- а) элементарный;
- б) химический;
- в) молекулярный;
- г) физический.
- 4. Объемный метод количественного анализа, при котором к раствору исследуемого продукта приливают раствор реагента точно известной концентрации (титрант) в количестве, соответствующей содержанию

определяемого вещества.

- а) гравиметрический метод;
- б) титриметрический метод;
- в) качественный метод;
- г) количественный метод

$$\Delta E = E_1 - E_2 = h \frac{c}{\lambda} = h \cdot v$$

h – постоянная планка, c – скорость света, λ – длина волны излучения, ν – волновое

- число.
- а) уравнение Энштейна;
- б) уравнение Ньютона;
- в) уравнение Гука;
- г) уравнение Энштейна-Ньютона.

6. Способы регистрации спектра (несколько вариантов)

- а) визуальный (спектроскопы);
- б) фотографический (в спектрографах);
- в) фотоэлектрический основан на использовании фотоэлементов и фотоумножителей (в спектрометрах или квантометрах);
- г) фотоэлектронный.

7. Фотометрия пламени – это

- а) разновидность эмиссионно-спектрального анализа;
- б) разновидность визуального анализа;
- в) разновидность фотографического анализа;
- г) разновидность фотоэлектрического анализа.

8. Метод молекулярно — адсорбционной спектроскопии в УФ- и видимой областях спектра обычно называют

- а) фотометрией;
- б) спектрофотометрией;
- в) фотоэлектрометрией;
- г) спектрометрией.

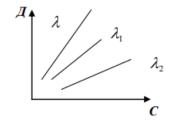
$$\lg \frac{I_0}{I} = klc ,$$

где I_0 –интенсивность светового потока, падающего на образец (т.е. при l=0);

I –интенсивность светового потока, на выходе из слоя раствора;

1 – толшина слоя:

- с –концентрация вещества.
- а) закон Бугера-Ламберта-Бера;
- б) закон Ламберта-Бугера-Бера;
- в) закон Бугера-Бера;
- г) закон Ламберта-Бера.


10. В видимой области используют стекла различного состава. В УФ области в качестве оптического материала применяют кристаллический кварц, природный флюорит (CaF2), фтористый литий (LiF). Для ИК области используют солевую оптику

- а) спектральная оптика;
- б) неспектральная оптика;
- в) приемники излучения;
- г)спектральное излучение.

- 11. При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять _______, а затем зарегистрировать
- а) системой;
- б) установкой;
- в) приемником;
- г) оборудованием.

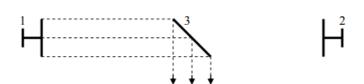
12. Фотоэлектроколориметрия – это разновидность

- а) молекулярно-абсорбционного анализа;
- б) физико-химического анализа;
- в) молекулярного анализа;
- г) абсорбционного анализа.

13.

- а) закон Ньютона;
- б) закон Бера;
- в) закон Ньютон-Бера;
- г) закон Энштейна-Бера.

14. Фотоэлектрические устройства для измерения селективного поглощения излучения, в которых для выделения длины волны применяются светофильтры, называются


- а) фотоколориметрами;
- б) электрофотоколориметрами;
- в) электроколориметрами;
- г) фотоэлектроколориметрами.

15. Рентгеновский спектр – это

- а) распределение интенсивности рентгеновского излучения, не прошедшего через образец по длинам волн;
- б) распределение интенсивности рентгеновского излучения, прошедшего через образец по длинам спектров;
- в) распределение интенсивности рентгеновского излучения, прошедшего через образец по длинам волн;
- г) распределение интенсивности рентгеновского излучения, прошедшего параллельно образцу по длинам волн.

16. Альтернативой рентгеновским методам являются

- а) дифрактометрические методы;
- б) радиационные методы;
- в) дефектоскопические методы;
- г) рентгеновские методы.

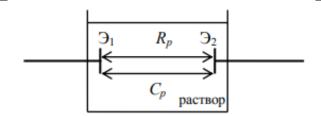
17.

- а) схема оптического излучения;
- б) схема получения радиационного излучения;
- в) схема получения спектрического излучения;
- г) схема получения ренгеновского излучения.
- 18. Съемка рентгенограмм ведется в камерах с использованием монохроматического рентгеновского излучения и образцов из тонкого порошка в виде цилиндрического столбика (диаметр 0,5...0,8 мм, высота 5...6 мм)
- а) метод порошка (Дебая Шерера);
- б) метод Гейгера Мюллера;
- в) сцинтилляционный метод;
- г) метод порошка Дебая.

19. Этот метод широко распространен в электронной микроскопии

- а) прямой;
- б) непрямой;
- в) косвенный;
- г) косвенно-прямой.

20. Растровый ЭМ (РЭМ) – это


- а) прибор, в основу работы которого положен телевизионный принцип развертки тонкого пучка электронов на поверхности непрозрачного исследуемого образца;
- б) прибор, в основу работы которого положен визуальный принцип развертки тонкого пучка электронов на поверхности непрозрачного исследуемого образца;
- в) прибор, в основу работы которого положен телевизионный принцип развертки толстого пучка электронов на поверхности непрозрачного исследуемого образца;
- г) прибор, в основу работы которого положен телевизионный принцип развертки тонкого пучка электронов на поверхности прозрачного исследуемого образца.

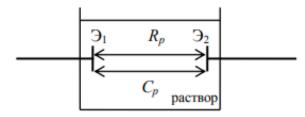
21. По разрешающей способности электронные микроскопы делятся на классы (несколько вариантов):

- а) 1 класс -0.5 1.5 нм просвечивающего типа;
- б) 2 класс -2-3 нм просвечивающего типа;
- в) 3 класс -5 15 нм растровые;
- Γ) 4 класс 15 20 нм просвечивающерастрового типа.

22. Величину, обратную удельному сопротивлению, называют

- а) электропроводностью;
- б) удельной проводностью;
- в) проводностью;
- г) удельной электропроводностью.

23.


- а) ячейка для кондуктометрических измерений;
- б) ячейка для метрических измерений;
- в) ячейка для кондуктотитрических измерений;
- г) ячейка для титрических измерений.

24. Адсорбентами называют

- а) мягкие тела, на поверхности которых происходит поглощение адсорбируемого вещества;
- б) твердые тела, на поверхности которых происходит поглощение адсорбируемого вещества;
- в) твердые тела, на поверхности которых происходит отражение адсорбируемого вещества;
- г) мягкие тела, на поверхности которых происходит отражение адсорбируемого вещества.

25. Назовите способы жидкого хромотографа

- а) фронтальный;
- б) проявительный;
- в) вытеснительный;
- г) вертикальный.

26.

- а) ячейка для кондуктометрических измерений;
- б) ячейка для метрических измерений;
- в) ячейка для кондуктотитрических измерений;
- г) ячейка для титрических измерений.

27. Адсорбентами называют

- а) мягкие тела, на поверхности которых происходит поглощение адсорбируемого вещества;
- б) твердые тела, на поверхности которых происходит поглощение адсорбируемого вещества;
- в) твердые тела, на поверхности которых происходит отражение адсорбируемого вещества;
- г) мягкие тела, на поверхности которых происходит отражение адсорбируемого вещества.

28. Назовите способы жидкого хромотографа

а) фронтальный;

- б) проявительный;
- в) вытеснительный;
- г) вертикальный.

29. Растровый ЭМ (РЭМ) – это

- а) прибор, в основу работы которого положен телевизионный принцип развертки тонкого пучка электронов на поверхности непрозрачного исследуемого образца;
- б) прибор, в основу работы которого положен визуальный принцип развертки тонкого пучка электронов на поверхности непрозрачного исследуемого образца;
- в) прибор, в основу работы которого положен телевизионный принцип развертки толстого пучка электронов на поверхности непрозрачного исследуемого образца;
- г) прибор, в основу работы которого положен телевизионный принцип развертки тонкого пучка электронов на поверхности прозрачного исследуемого образца.

30.По разрешающей способности электронные микроскопы делятся на классы (несколько вариантов):

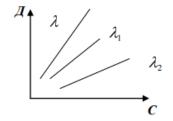
- а) 1 класс -0.5 1.5 нм просвечивающего типа;
- б) 2 класс -2-3 нм просвечивающего типа;
- в) 3 класс -5 15 нм растровые;
- г) 4 класс 15 20 нм просвечивающерастрового типа.

31. Величину, обратную удельному сопротивлению, называют

- а) электропроводностью;
- б) удельной проводностью;
- в) проводностью;
- г) удельной электропроводностью.

32.

- а) схема оптического излучения;
- б) схема получения радиационного излучения;
- в) схема получения спектрического излучения;
- г) схема получения ренгеновского излучения.
 - 33. Съемка рентгенограмм ведется в камерах с использованием монохроматического рентгеновского излучения и образцов из тонкого порошка в виде цилиндрического столбика (диаметр 0,5...0,8 мм, высота 5...6 мм)
- а) метод порошка (Дебая Шерера);
- б) метод Гейгера Мюллера;
- в) сцинтилляционный метод;
- г) метод порошка Дебая.


34. Этот метод широко распространен в электронной микроскопии

а) прямой;

- б) непрямой;
- в) косвенный;
- г) косвенно-прямой.

35. Фотоэлектроколориметрия – это разновидность

- а) молекулярно-абсорбционного анализа;
- б) физико-химического анализа;
- в) молекулярного анализа;
- г) абсорбционного анализа.

36.

- а) закон Ньютона;
- б) закон Бера;
- в) закон Ньютон-Бера;
- г) закон Энштейна-Бера.

37. Фотоэлектрические устройства для измерения селективного поглощения излучения, в которых для выделения длины волны применяются светофильтры, называются

- а) фотоколориметрами;
- б) электрофотоколориметрами;
- в) электроколориметрами;
- г) фотоэлектроколориметрами.

38. Рентгеновский спектр – это

- а) распределение интенсивности рентгеновского излучения, не прошедшего через образец по длинам волн;
- б) распределение интенсивности рентгеновского излучения, прошедшего через образец по длинам спектров;
- в) распределение интенсивности рентгеновского излучения, прошедшего через образец по длинам волн;
- г) распределение интенсивности рентгеновского излучения, прошедшего параллельно образцу по длинам волн.

39. Альтернативой рентгеновским методам являются

- а) дифрактометрические методы;
- б) радиационные методы;
- в) дефектоскопические методы;
- г) рентгеновские методы.

40.Способы регистрации спектра (несколько вариантов)

- а) визуальный (спектроскопы);
- б) фотографический (в спектрографах);
- в) фотоэлектрический основан на использовании фотоэлементов и фотоумножителей (в спектрометрах или квантометрах);
- г) фотоэлектронный.

41.Фотометрия пламени – это
а) разновидность эмиссионно-спектрального анализа;
б) разновидность визуального анализа;
в) разновидность фотографического анализа;
г) разновидность фотоэлектрического анализа.
42.Метод молекулярно – адсорбционной спектроскопии в УФ- и
видимой областях спектра обычно называют
а) фотометрией;
б) спектрофотометрией;
в) фотоэлектрометрией;
г) спектрометрией.
$\lg \frac{I_0}{I} = klc$,
где I_0 –интенсивность светового потока, падающего на образец (т.е. при $l=0$);
I—интенсивность светового потока, на выходе из слоя раствора; l —толщина слоя;
43. c –концентрация вещества.
а) закон Бугера-Ламберта-Бера;
б) закон Ламберта-Бугера-Бера;
в) закон Бугера-Бера;
г) закон Ламберта-Бера.
44.В видимой области используют стекла различного состава. В УФ
области в качестве оптического материала применяют
кристаллический кварц, природный флюорит (CaF2), фтористый
(I:E) II _ HIC of
литий (LiF). Для ИК области используют солевую оптику
а) спектральная оптика;
· · · · · · · · · · · · · · · · · · ·
а) спектральная оптика;
а) спектральная оптика;б) неспектральная оптика;
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения;
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение.
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой;
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой;
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником;
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником; г) оборудованием.
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником; г) оборудованием. 46.Какой анализ позволяет установить, из каких химических
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником; г) оборудованием. 46.Какой анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником; г) оборудованием. 46.Какой анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником; г) оборудованием. 46.Какой анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав а) качественный; б) количественный; в) молекулярный;
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником; г) оборудованием. 46.Какой анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав а) качественный; б) количественный; в) молекулярный; г) функциональный.
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником; г) оборудованием. 46.Какой анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав а) качественный; б) количественный; в) молекулярный; г) функциональный.
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником; г) оборудованием. 46.Какой анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав а) качественный; б) количественный; в) молекулярный; г) функциональный.
а) спектральная оптика; б) неспектральная оптика; в) приемники излучения; г)спектральное излучение. 45.При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять, а затем зарегистрировать а) системой; б) установкой; в) приемником; г) оборудованием. 46.Какой анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав а) качественный; б) количественный; в) молекулярный; г) функциональный.

- в) молекулярный;
- г) функциональный.

48. Какой анализ называется анализом мокрым путем?

- а) элементарный;
- б) химический;
- в) молекулярный;
- г) физический.
 - 49.Объемный метод количественного анализа, при котором к раствору исследуемого продукта приливают раствор реагента точно известной концентрации (титрант) в количестве, соответствующей содержанию определяемого вещества
- а) гравиметрический метод;
- б) титриметрический метод;
- в) качественный метод;
- г) количественный метод.

$$\Delta E = E_1 - E_2 = h \frac{c}{\lambda} = h \cdot v$$

h – постоянная планка, c – скорость света, λ – длина волны излучения, v – волновое

50. число.

- а) уравнение Энштейна;
- б) уравнение Ньютона;
- в) уравнение Гука;
- г) уравнение Энштейна-Ньютона.
 - 51.Объемный метод количественного анализа, при котором к раствору исследуемого продукта приливают раствор реагента точно известной концентрации (титрант) в количестве, соответствующей содержанию определяемого вещества
- а) гравиметрический метод;
- б) титриметрический метод;
- в) качественный метод;
- г) количественный метод.

$$\Delta E = E_1 - E_2 = h \frac{c}{\lambda} = h \cdot \nu$$

h – постоянная планка, c – скорость света, λ – длина волны излучения, ν – волновое

52. число.

- а) уравнение Энштейна;
- б) уравнение Ньютона;
- в) уравнение Гука;
- г) уравнение Энштейна-Ньютона.

53. Какой анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ

- а) качественный;
- б) количественный;
- в) молекулярный;
- г) функциональный.

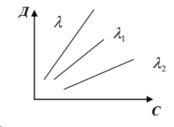
54.Какой анализ называется анализом мокрым путем?

а) элементарный;

б) химический;
в) молекулярный;
г) физический.
55.При проведении адсорбционного спектрального анализа излучение
источника света, разложенное в спектр в монохрометре, необходимо
принять, а затем зарегистрировать
а) системой;
б) установкой;
в) приемником;
г) оборудованием.
56.Какой анализ позволяет установить, из каких химических
элементов состоит анализируемое вещество и какие ионы, группы
атомов или молекулы входят в его состав
а) качественный;
б) количественный;
в) молекулярный;
г) функциональный.
$\lg \frac{I_0}{I} = klc$,
I где I_0 –интенсивность светового потока, падающего на образец (т.е. при I =0); I –интенсивность светового потока, на выходе из слоя раствора; I –толщина слоя;
57. c –концентрация вещества.
а) закон Бугера-Ламберта-Бера;
б) закон Ламберта-Бугера-Бера;
в) закон Бугера-Бера;
г) закон Ламберта-Бера.
58.В видимой области используют стекла различного состава. В УФ
области в качестве оптического материала применяют
кристаллический кварц, природный флюорит (CaF2), фтористый
литий (LiF). Для ИК области используют солевую оптику
а) спектральная оптика;
б) неспектральная оптика;
в) приемники излучения;
г)спектральное излучение.
59.Способы регистрации спектра (несколько вариантов)
а) визуальный (спектроскопы);
б) фотографический (в спектрографах);
в) фотоэлектрический – основан на использовании фотоэлементов и
фотоумножителей (в спектрометрах или квантометрах);
г) фотоэлектронный.
60.Фотометрия пламени – это
а) разновидность эмиссионно-спектрального анализа;
б) разновидность визуального анализа;
в) разновидность фотографического анализа;
г) разновидность фотоэлектрического анализа.

61.Метод молекулярно – адсорбционной спектроскопии в УФ- и

видимой областях спектра обычно называют


- а) фотометрией;
- б) спектрофотометрией;
- в) фотоэлектрометрией;
- г) спектрометрией.

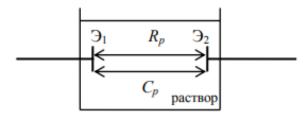
62. Рентгеновский спектр – это

- а) распределение интенсивности рентгеновского излучения, не прошедшего через образец по длинам волн;
- б) распределение интенсивности рентгеновского излучения, прошедшего через образец по длинам спектров;
- в) распределение интенсивности рентгеновского излучения, прошедшего через образец по длинам волн;
- г) распределение интенсивности рентгеновского излучения, прошедшего параллельно образцу по длинам волн.

63. Альтернативой рентгеновским методам являются

- а) дифрактометрические методы;
- б) радиационные методы;
- в) дефектоскопические методы;
- г) рентгеновские методы.

64


- а) закон Ньютона;
- б) закон Бера;
- в) закон Ньютон-Бера;
- г) закон Энштейна-Бера.
 - 65. Фотоэлектрические устройства для измерения селективного поглощения излучения, в которых для выделения длины волны применяются светофильтры, называются
- а) фотоколориметрами;
- б) электрофотоколориметрами;
- в) электроколориметрами;
- г) фотоэлектроколориметрами.
 - 66.Съемка рентгенограмм ведется в камерах с использованием монохроматического рентгеновского излучения и образцов из тонкого порошка в виде цилиндрического столбика (диаметр 0,5...0,8 мм, высота 5...6 мм)
- а) метод порошка (Дебая Шерера);
- б) метод Гейгера Мюллера;
- в) сцинтилляционный метод;
- г) метод порошка Дебая.

67. Этот метод широко распространен в электронной микроскопии

- а) прямой;
- б) непрямой;
- в) косвенный;
- г) косвенно-прямой.

68. Фотоэлектроколориметрия – это разновидность

- а) молекулярно-абсорбционного анализа;
- б) физико-химического анализа;
- в) молекулярного анализа;
- г) абсорбционного анализа.

69.

- а) ячейка для кондуктометрических измерений;
- б) ячейка для метрических измерений;
- в) ячейка для кондуктотитрических измерений;
- г) ячейка для титрических измерений.

70.Адсорбентами называют

- а) мягкие тела, на поверхности которых происходит поглощение адсорбируемого вещества;
- б) твердые тела, на поверхности которых происходит поглощение адсорбируемого вещества;
- в) твердые тела, на поверхности которых происходит отражение адсорбируемого вещества;
- г) мягкие тела, на поверхности которых происходит отражение адсорбируемого вещества.

71. Назовите способы жидкого хромотографа

- а) фронтальный;
- б) проявительный;
- в) вытеснительный;
- г) вертикальный.

72.Растровый ЭМ (РЭМ) – это

- а) прибор, в основу работы которого положен телевизионный принцип развертки тонкого пучка электронов на поверхности непрозрачного исследуемого образца;
- б) прибор, в основу работы которого положен визуальный принцип развертки тонкого пучка электронов на поверхности непрозрачного исследуемого образца;
- в) прибор, в основу работы которого положен телевизионный принцип развертки толстого пучка электронов на поверхности непрозрачного исследуемого образца;
- г) прибор, в основу работы которого положен телевизионный принцип развертки тонкого пучка электронов на поверхности прозрачного

		_	
исследу	VEMOTO	000331	ıa
ricciica	V CIVICI O	OODUJL	Lu.

73.По разрешающей способности электронные микроскопы делятся на классы (несколько вариантов):

- а) 1 класс -0.5 1.5 нм просвечивающего типа;
- б) 2 класс -2-3 нм просвечивающего типа;
- в) 3 класс -5 15 нм растровые;
- Γ) 4 класс 15 20 нм просвечивающерастрового типа.

74. Величину, обратную удельному сопротивлению, называют

- а) электропроводностью;
- б) удельной проводностью;
- в) проводностью;
- г) удельной электропроводностью.

75.

- а) схема оптического излучения;
- б) схема получения радиационного излучения;
- в) схема получения спектрического излучения;
- г) схема получения ренгеновского излучения.
 - **76.** Какой анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ?
 - 77. Фотометрия пламени это..
 - **78.** При проведении адсорбционного спектрального анализа излучение источника света, разложенное в спектр в монохрометре, необходимо принять _______, а затем зарегистрировать.
 - 79. Рентгеновский спектр это...
 - 80. Какой метод широко распространен в электронной микроскопии?
 - **81.** Растровый ЭМ (РЭМ) это....
 - **82.**Какой анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав?
 - 83. Какой анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ?
 - 84. Какой анализ называется анализом мокрым путем?
 - 85. Фотоэлектроколориметрия это разновидность...

КЛЮЧК тестам по дисциплине «Механика разрушений строительных материалов и изделий»

1. a	26.a	51. б	76. качественный;
2. б	27.6	52. a	77. разновидность эмиссионно-спектрального
			анализа;
3. б	28.а,б,в	53. б	78. приемником;
4. б	29.a	54. б	79. распределение интенсивности
			рентгеновского излучения, прошедшего через
			образец по длинам волн;
5. a	30.а,б,в	55. в	80. косвенный;
6. а,б,в	31.г	56. a	81. прибор, в основу работы которого положен
			телевизионный принцип развертки тонкого
			пучка электронов на поверхности
			непрозрачного исследуемого образца;
7. a	32.г	57. a	82. качественный;
8. б	33.a	58. a	83. количественный;
9. a	34.в	59. а,б,в	84. химический;
10. a	35.a	60. a	85. молекулярно-абсорбционного анализа;
11. в	36.б	61. б	
12. a	37.г	62. в	
13. б	38.в	63. б	
14. г	39.6	64. б	
15. в	40.а,б,в	65. г	

16. б	41.a	66. a	
17. г	42.6	67. в	
18. a	43.a	68. a	
19. в	44.a	69. a	
20. a	45.в	70. б	
21. а,б,в	46.a	71. а,б,в	
22. г	47.б	72. a	
23. a	48.б	73. а,б,в	
24. б	49.б	74. г	
25. а,б,в	50.a	75. г	

Разработчик

зав. каф., к.т.н. М.А. Елесин