Документ подписан простой элект Мийистерство науки и высшего образования РФ
Информация о влетеральное государственное бюджет ное образовательное учреждение ФИО: Игнатенко Виталий Иванович
Должность: Проректор по образовательной деятельности и мв. университет им. Н. М. Федоровского» Уникальный программный ключ:

а49ае343аf5448d45d7e3e1e499659da8109ba78

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

«Металлургия меди и никеля»

Факультет: <u>ГТФ</u>		
Направление подготовки: 22.03.02 «Металл	<u>пургия»</u>	
Направленность (профиль): «Прогрессивни	ые методы получения ц	ветных металлов»
Уровень образования: <u>бакалавриат</u> Кафедра « <u>Металлургии, машин и оборудова</u> наименование кафедры	. <u>ния</u> »	
Разработчик ФОС:		
Старший преподаватель (должность, степень, ученое звание)	(подпись)	Рогова Л.И.

Оценочные материалы по дисциплине рассмотрены и одобрены на заседании кафедры, протокол № $\underline{2}$ от « $\underline{07}$ » $\underline{05}$ 2025 г.

Заведующий кафедрой к.т.н., доцент Крупнов Л.В.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения
компетенции	
ПК-1: Способствует	ПК-1.1: Применяет знания основных закономерностей
осуществлению и	протекания металлургических процессов для повышения
корректировки	эффективности производства цветных металлов
технологических процессов в	
металлургии	ПК-1.2: Использует основные принципы разработки
	технических решений и технологий в области металлурги

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы)	Формируемая компетенция	Наименование оценочного	Показатели оценки
дисциплины		средства	_
Принципиальные	ПК-1	Тестовые задания	Решение всех тестовых
технологические			заданий по темам
схемы			
пирометаллургического			
получения меди и никеля			
Классификация	ПК-1	Тестовые задания	Решение всех тестовых
процессов			заданий по темам
плавки сульфидного			
сырья			
Автогенные процессы	ПК-1	Тестовые задания	Решение всех тестовых
плавок в фильтрующем			заданий по темам
слое и с сжиганием			
сульфидов в факеле.			
Автогенные процессы	ПК-1	Тестовые задания	Решение всех тестовых
плавок в расплаве.			заданий по темам
		_	
Конвертирование	ПК-1	Тестовые задания	Решение всех тестовых
штейнов.			заданий по темам
Методы разделения меди	ПК-1	Тестовые задания	Решение всех тестовых
и никеля.	11111	тестовые задания	
и никсля.			заданий по темам
Получение ферроникеля	ПК-1	Тестовые задания	Решение всех тестовых
электроплавкой			заданий по темам
окисленных никелевых			
руд.			
Гидрометаллургия медно-	ПК-1	Тестовые задания	Решение всех тестовых
никелевого и никелевого			заданий по темам
материалов.			Sugarrini no remain

Зачет	ПК-1	Решение всех	Решение всех тестовых
		тестовых заданий	заданий по темам
		по темам	

1. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	Наименование	Сроки	Шкала	Критерии
	оценочного средства	выполнения	оценивания	оценивания
Про	межуточная аттестация в	форме «Зачета»		
	Тестовые задания	В течении	от 0 до 5 баллов	Зачет/Незачет
		обучения по		
		дисциплине		
ИТС	ОГО:	-	баллов	-
Кри	терии оценки результатов о	бучения по дисци	плине:	
Пороговый (минимальный) уровень для аттестации в форме				
зачета – 75 % от максимально возможной суммы баллов				
Зачет выставляется при сдаче студентом всех тестовых заданий				

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

Для очной, очно-заочной формы обучения Задания для текущего контроля и сдачи дисциплины

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
1. Молярная масса моихукита Cu ₉ (Fe,Ni) ₉ S ₁₆ :	ПК-1
1. 2123 г/моль	
2. 158 г/моль	
3. 1245 г/моль	
4. 3112 г/моль	
2. Вычислить содержание магния в карбонате магния MgCO ₃ :	ПК-1
1. 31,16%	
2. 26,31%	
3. 28,57%	
4. 41,23%	
2. D. Transport Managarini Managa	ПК-1
3. В процессе железоочистки железистых хвостов, образующихся	111X-1
при серосульфидной флотации, протекает реакция	
$2FeSO_{4+}^{1/2}O_{2}+7H_{2}O+2CaCO_{3}=2Fe (OH)_{3}+2CaSO_{4}\cdot 2H_{2}O+2CO_{2}\uparrow.$	

Сколько потребуется м ³ воздуха, если по реакции расходуется 23,88 кг FeSO ₄ ?	
1. 6.1 m^3 2. 4.2 m^3	
$3.69 \mathrm{m}^3$	
$4.8,8 \text{ m}^3$	
4. Рассчитать массу азота, который занимает при нормальных	ПК-1
условиях объем 400 m^3 .	
1. 190 кг	
2. 350 кг	
3. 250 кг	
4. 500 кг	
5. Истинная молярная теплоемкость оксида железа (II) FeO в	ПК-1
интервале 298–1650 К выражается уравнением	
$C_p = 50.80 + 8.61 \cdot 10^{-3} T - 3.31 \cdot 10^5 T^{-2}$.	
Рассчитать истинную молярную теплоемкость FeO при 100 °C.	
1. ~51,63 Дж/(моль⋅К)	
2. ~58,83 Дж/(моль⋅К)	
3. ~91,63 Дж/(моль·К)	
4. ~58,81 Дж/(моль⋅К)	
6. Молярная теплоемкость воздуха при постоянном давлении в	ПК-1
интервале температур 100 и 400°C составляет 31,36 Дж/(моль·К).	
Чему равняется его удельная теплоемкость?	
1. 1,54 Дж/(г·К)	
2. 1,45 Дж/(г·K)	
3. 2,03 Дж/(г·К)	
4. 1,08 Дж/(г·К)	
7. Какому минералу соответствует формула NiFeS ₂ ?	ПК-1
1. Халькопирит	
2. Пентландит	
3. Халькозин	
4. Кубанит	
8. Формула хизлевудита:	ПК-1
1. NiFeS ₂	
$2. Ni_3S_2$	
$3. \text{ FeS}_2$	
$4. \text{ Fe}_7 S_8$	
9. Найти при температуре 25°C среднюю удельную теплоемкость	ПК-1
металлосодержащей шихты, состав которой приведен в таблице	
Компоненты Масса, кг С, Дж/(моль К)	
Cu ₂ S 47,82 76,32	

NiFeS	6,62	86,2				
Fe ₇ S ₈	14,96	318,5	5			
SiO_2	26,10					
Проч	ие 4,50	-				
2 3 4	. ~1,54 кДж/(кг . ~0,45 кДж/(кг . ~2,03 кДж/(кг . ~1,08 кДж/(кг	··K) ··K) ··K)				
вытеснени +0,34 В?	металл нельзя і и меди из раст	вора, если ст	андартный і		енциал меди	ПК-1
Me	Zn	Со	Hg		In	
ε°, B	-0,763	-0,270	+0,798		-0,343	.
2 3	. C o . Zn . H g 4 . I n					
1 2 3	сульфуризацие . Извлечение со . Пылевынос . Извлечение со 4. Содержание	еры в штейн еры в газову	ю фазу			ПК-1
1. 2. 3.	го в медный эл Для уменьшен Для подавлені Для повышені Для снижения	ия дендрито ия питтингос ия электропр	образования образования оводности э	я элект	гролита.	ПК-1
ПАО «ГМ 1 2 3	й печи произво К «НН»? . Отражательно . Рудно-термич . Печи взвешен . Печи Ванюко	ой пеской пной плавки	на штейн на	Мед	цном заводе	ПК-1
1 2 3	онвертировании . Файнштейн . Черновую ме, . Анодную мед . Отвальный ш	ДЬ ,Ь	елевого ште	йна	получают:	ПК-1
15. По как	ой технологии т Талнахской о	перерабаты			вый	ПК-1

1. Гравитационное обогащение	
2. Химическое обогащение	
3. Флотационное обогащение	
4. Плавка на штейн	
4. Плавка на штеин	
16. Какая из приведенных реакций является реакцией	ПК-1
сульфидирования цветных металлов?	
$1. \text{ MeS} + \text{CaO} + \text{C} \leftrightarrow \text{Me} + \text{CaS} + \text{CO}_2$	
2. $CuFeS_2 = Cu_2S + 2FeS + \frac{1}{2}S$	
$3. Cu2O + FeS \leftrightarrow Cu2S + FeO$	
4. Cu2O + CO = 2Cu + CO2	
17. Какое из перечисленных свойств шлака улучшается с ростом в	ПК-1
нем содержания Si02?	THE I
1. Плотность	
2. Плавкость	
3. Вязкость	
4. Межфазное натяжение	
18. К агрегатам с факельной плавкой относится:	ПК-1
1. Печь взвешенной плавки	1110 1
2. Обеднительная электропечь 3. Печь Ванюкова	
4. Рудно-термическая печь	
19. В какой печи ведется плавка на штейн в восстановительной	ПК-1
газовой атмосфере?	
1. Печь взвешенной плавки	
2. Отражательная	
3. Печь Ванюкова	
4. Рудно-термическая	
20. Vovož vo povogavnik v povoga v opropovnik v	ПК-1
20. Какой из приведенных процессов не относится к автогенным?	11111
1. Норанда 2. Мунуубууч	
2. Мицубиси	
3. Отражательная плавка	
4. Конвертирование	
21. С повышением десульфуризации:	ПК-1
1. Уменьшается выход шлака	
2. Повышается содержание цветных металлов в штейне	
3. Увеличивается масса штейна	
4. Повышается извлечение цветных металлов в штейне	
22. Рассчитать массу медного никельсодержащего штейна при	ПК-1
плавке шихты на штейн с содержанием Си – 50 %, при извлечении	
в штейн Cu – 97 % и содержании её в шихте 22,90 т.	
1. 44,42 т	

	<u> </u>
2. 51,45 т	
3. 62,03 т	
4. 31,08 т	
23. Рассчитать массу халькопирита, пентландита, пирротина в 100 кг руды, если известен её химический состав (%): Cu-19,85, Ni-2,6; Fe-35,5; S-28,5 и прочие. Кроме того, известно, что 25 % меди	ПК-1
содержится в кубаните.	
1. ~44,42 кг; ~CuFeS ₂ ; ~1,45 кг NiFeS ₂ ; ~32,04 кг Fe ₇ S ₈ 2. ~47,64 кг CuFeS ₂ ; ~5,15 кг NiFeS ₂ ; ~16,25 кг Fe ₇ S ₈ 3. ~40,41 кг CuFeS ₂ ; ~5,47 кг NiFeS ₂ ; ~22,03 кг Fe ₇ S ₈ 4. ~50,44 кг CuFeS ₂ ; ~2,41 кг NiFeS ₂ ; ~22,02 кг Fe ₇ S ₈	
24. Определить, какое количество теплоты выделится при ошлаковании 50 кг сульфида железа FeS при 25°C и атмосферном	ПК-1
давлении?	
$2FeS + 3O_2 + SiO_2 = (FeO)_2 \cdot SiO_2 + 2SO_2$	
Теплоты образования веществ, участвующих в реакции:	
$\Delta_f H^{\circ}_{298} \text{ (FeS)}_{(\kappa)} = -100,42 \text{ кДж/моль}$	
$\Delta_f H^{\circ}_{298} (\mathrm{SiO}_2)_{(\kappa)} = -910{,}94 \mathrm{кДж/моль}$	
$\Delta_f H^{\circ}_{298} (SO_2)_{(\Gamma)} = -296,90 \ кДж/моль$	
$\Delta_f H^{\circ}_{298} \text{ (FeO)}_2 \cdot \text{SiO}_{2 \text{ (к)}} = -1447,66 \text{ кДж/моль}$	
1. 319 кДж	
2. 264кДж	
3. 264 МДж	
4. 319 МДж	
25. Рассчитать физическую теплоту шихты при 25°C, если масса	ПК-1
шихты 113,02 кг, а удельная теплоемкость 0,82 кДж/(кг·К).	
1. ~2317 кДж	
2. ~2510 кДж	
3. ~2240 кДж	
4. ~2430 МДж	

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
1. Молярная масса никелевого купороса NiSO ₄ ·7H ₂ O:	ПК-1
1. 155 г	
2. 398 г	
3. 281 г	
4. 417 г	
2. Вычислить содержание серы в кубаните CuFe ₂ S ₃ :	ПК-1
1. 35,29%	
2. 26,31%	
3. 30,57%	
4. 40,21%	

3. В процессе железоочистки железистых хвостов, образующихся при серосульфидной флотации, протекает реакция 2FeSO ₄₊ ½O ₂ +7H ₂ O+2CaCO ₃ =2Fe (OH) ₃ +2CaSO ₄ ·2H ₂ O+2CO ₂ ↑. Сколько образуется гидроксида железа, если в жидкой фазе 1 м³ пульпы железистых хвостов содержится 10,8 кг Fe, а остаточное содержание железа в жидкой фазе после железоочистки составляет 2 г/л? 1. 14,11 кг 2. 18,05 кг 3. 17,63 кг 4. 16,81 кг	ПК-1
4. Сколько м ³ кислорода потребуется для окисления 150 кг троилита FeS до вюстита FeO, если процесс протекает при нормальных условиях? 1. 66,1 м ³ 2. 50,2 м ³ 3. 57,3 м ³ 4. 48,8 м ³	ПК-1
5. Истинная молярная теплоемкость воздуха при постоянном давлении выражается уравнением $C_p = 27,20 + 4,18\cdot 10^{-3}T.$ Найти истинную удельную теплоемкость при постоянном давлении при температуре 150 °C. $1. \sim 20,63~\text{Дж/(моль·К)}$ $2. \sim 48,83~\text{Дж/(моль·К)}$ $3. \sim 31,63~\text{Дж/(моль·К)}$ $4. \sim 28,99~\text{Дж/(моль·К)}$	ПК-1
6. Молярная теплоемкость магнетита Fe ₃ O ₄ при температуре 25°C составляет 129,3 Дж/(моль·К). Чему равняется его удельная теплоемкость? 1. 1,54 Дж/(г·К) 2. 0,56 Дж/(г·К) 3. 0,83 Дж/(г·К) 4. 1,08 Дж/(г·К)	ПК-1
7. Какому минералу соответствует формула CuFe ₂ S ₃ ? 1. Халькопирит 2. Пентландит 3. Халькозин 4. Кубанит	ПК-1

8. Формула пир	ротина:					ПК-1
1. NiF	eS_2					
2. Ni ₃ S	\mathbf{S}_2					
3. FeS						
4. Fe ₇ S	_					
		25°C 202444		ии и о то		ПК-1
9. Найти при т						111X-1
металлосодерж				еден в	гаолице	
Компоненты	Масса, кг	С, Дж/(молн	5·K)			
CuFeS ₂	57,82	86,2				
NiFeS ₂	6,62	86,2				
Fe ₇ S ₈	14,96	318,5				
SiO_2	16,10	44,43				
Прочие	4,50	-				
	1,00					
-	51 кДж/(кг∙Н	/				
2. ~0,4	45 кДж/(кг∙1	()				
3. ~1,0)3 кДж/(кг∙І	\mathcal{K})				
·	88 кДж/(кг·I	,				
,	, , ,	,				
10. Из пере	численн	ых металл	тов вы	братн	ь металл,	ПК-1
для которог	го оставі	шиеся мет	аллы г	іриго	дны в	
качестве металл	пов-цемента	торов?				
Me Zn		Со	Hg		Cu	
ε°, Β -0,7	763	-0,270	+0,798		+ 0,34	
1. Co		-,	- ,		- 9-	
2. Zn						
3. Hg						
4.Cu						
4.Cu						
11. Чему ра	вняется	десульфу	ризаци	ія, ес	сли при	ПК-1
плавке на п			-		-	
а в получен			-		-	
соответственно				,		
1. 55 %	•					
2. 69 %						
3. 60 %						
4. 48 %						
4. 48 %						
12. Для чег	о в медн	ый электр	ролит Д	добан	ЗЛЯЮТ	ПК-1
тиомочевин	ı y ?					
1. Для	уменьшен	ния дендри	итообра	азова	ния	
-	-	иттингообра	_			
3. Для повышения электропроводности						
электролита						
4. Для исключения загидрачивания катода						
13. В какой	-					ПК-1
Надеждинском металлургическом заводе?						

1. Отражательной	
2. Рудно-термической	
3. Печи взвешенной плавки	
4. Печи Ванюкова	
14. При конвертировании медного штейна	ПК-1
получают:	
1. Файнштейн	
2. Черновую медь	
3. Анодную медь	
4. Отвальный шлак	
15 Пура стуусруй исуусуласт аруастаа.	ПК-1
15. Пирротиновый концентрат является:	11111
1. Коллективным концентратом 2. Отвальными хвостами	
3. Промпродуктом	
4. Селективным концентратом	
16. Какая из приведенных реакций является	ПК-1
реакцией диссоциации сульфидов?	
1. $MeS+CaO+C \leftrightarrow Me+CaS + CO_2$	
2. $CuFeS_2 = Cu_2S + 2FeS + \frac{1}{2}S$	
$3. Cu_2O + FeS \leftrightarrow Cu_2S + FeO$	
4. Cu2O + CO = 2Cu + CO2	
17. Какое из перечисленных свойств шлака ухудшается с ростом в	ПК-1
нем содержания FeO?	
1. Плотность	
2. Плавкость	
3. Вязкость	
4. Межфазное натяжение на границе раздела шлак-	
металлсодержащий продукт	
18. К печам с фильтрующим слоем относится:	ПК-1
1. Печь взвешенной плавки	IIIC I
2. Обеднительная электропечь	
3. Печь Ванюкова	
4. Шахтная печь	
19. В какой печи нельзя перерабатывать	ПК-1
кусковой материал?	
1. Печь взвешенной плавки	
2. Обеднительная электропечь	
3. Печь Ванюкова	
4. Рудно-термическая печь	
20. Какой из приведенных сульфидов не является	ПК-1
высшим?	
1. Fe ₇ S ₈	

2. CuS	
3. C u ₂ S	
4. NiFeS ₂	
21. Какой компонент из перечисленных, не	ПК-1
входит в состав слюдок, образующихся при	
огневом рафинировании черновой меди?	
1. Se	
2. Ni	
3. A s	
4 . S b	
22. Рассчитать массу медно-никелевого штейна, образующегося	ПК-1
при плавке шихты в ПВП, содержащей $Cu-4,11$ т, $Ni-8,09$ т, если	
извлечение в штейн $Cu - 97\%$, $Ni - 95\%$, а суммарное содержание	
меди и никеля в штейне составляет 38 %.	
1. 44,42 T	
2. 21,45 т	
3. 42,03 т	
4. 30,71 т	
23. Рассчитать массу соединений в 100 кг оборотной пыли котла-	ПК-1
•	11111-1
утилизатора, содержащей ковеллин CuS, миллерит NiS, троилит FeS	
и прочие, если известен её химический состав (%): Cu-3,50, Ni-8,60;	
S-22,98 и прочие.	
1. ~6,42 кг CuS; ~10,45 кг NiS; ~22,04 кг FeS	
2. ~7,64 кг CuS; ~5,15 кг NiS; ~16,25 кг FeS	
3. ~4,41 кг CuS; ~15,47 кг NiS; ~42,03 кг FeS	
4. ~5,25 кг CuS; ~13,26 кг NiS; ~45,57 кг FeS	
24.0	ПК 1
24. Определить, какое количество теплоты выделится при получении	ПК-1
390 кг металлического железа при 25°C и атмосферном давлении	
$FeO+CO = Fe+CO_2$	
Теплоты образования веществ, участвующих в реакции:	
$\Delta_f H^{\circ}_{298} \text{ (FeO)}_{(\kappa)} = -264,85 \text{ кДж/моль},$	
$\Delta_f H^{\circ}_{298} (CO)_{(r)} = -110{,}53 \text{ кДж/моль},$	
$\Delta_f H^{\circ}_{298} (\text{CO}_2)_{(\Gamma)} = -393,51 \ \text{кДж/моль}.$	
1. ~126 кДж	
2. ~126 МДж	
3. ~164 МДж	
4. ~164 кДж	
4. ~104 k∕дж	
25. Рассчитать физическую теплоту шихты при 35°C, если масса	ПК-1
шихты 149 кг, а удельная теплоемкость 0,78 кДж/(кг·К).	
1. ~2381 кДж	
2. ~3900 кДж	
3. ~4068 кДж	
' '	
4. ~4474 кДж	

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
1. Молярная масса фаялита (FeO) ₂ ·SiO ₂ :	ПК-1
1. 179 г/моль	
2. 148 г/моль	
3. 1976 г/моль	
4. 2012 г/моль	
2. Вычислить содержание воды в медном купоросе CuSO ₄ ·5H ₂ O	ПК-1
1. 35,1%	
2. 26,0%	
3. 32,5%	
4. 36,0%	
3. В процессе железоочистки железистых хвостов, образующихся при	ПК-1
серосульфидной флотации, протекает реакция	
$2\text{FeSO}_{4+\frac{1}{2}}O_2 + 7\text{H}_2\text{O} + 2\text{CaCO}_3 = 2\text{Fe (OH)}_3 + 2\text{CaSO}_4 \cdot 2\text{H}_2\text{O} + 2\text{CO}_2\uparrow.$	
Сколько образуется гипса, если по реакции расходуется 23,88 кг	
FeSO ₄ ?	
1. 14,11 кг	
2. 18,05 кг	
3. 27,03 кг	
4. 16,81 кг	
4. При осаждении цветных металлов металлизированными	ПК-1
железорудными окатышами (МЖО) часть их тратится	
непроизводительно за счет протекания реакции	
$Fe+H_2SO_4 \rightarrow FeSO_4 + H_2 \uparrow$	
Сколько выделится м ³ водорода, если при протекании реакции	
нейтрализуется 3,09 кг кислоты жидкой фазы пульпы?	
$1. 1,121 \text{ m}^3$	
$2.0,706 \text{ m}^3$	
$3.0,279 \text{ m}^3$	
$4. \ 2,03 \ \mathrm{m}^3$	
5. Истинная молярная теплоемкость оксида меди (I) Cu ₂ O в	ПК-1
интервале 298-1500 К выражается уравнением	
$C_p = 56.57 + 29.29.10^{-3}T$	
Рассчитать истинную молярную теплоемкость Cu ₂ O при 127 °C.	
1. ~20,63 Дж/(моль∙К)	
2. ~68,29 Дж/(моль∙К)	
3. ~31,63 Дж/(моль∙К)	
4. ~28,99 Дж/(моль∙К)	

6.34		••		3.50.0	4.4.40	TIC 1
6. Молярная теп		-				ПК-1
Дж/(моль·К). Ч	• •	ся его удельн	ая тепл	оемкос	ть?	
1. 0,74	1 Дж/(г∙К)					
2. 0,65	5 Дж/(г∙К)					
3. 0,83	3 Дж/(г⋅К)					
•	З Дж/(г∙К)					
7 10		1	<u> </u>	F. C. 9		ПК-1
7. Какому мине 1. X	•	гствует форм	іула Си	res ₂ ?		11K-1
	ькопирит					
	тландит					
_	І ЬКОЗИН					
4. Ky6	анит					
8. Формула фая	лита?					ПК-1
1. NiFe						
2. Ni ₃ S						
	$O)_2 \cdot SiO_2$					
4. Fe ₇ S	/					
9. Найти при те		25°С средицо	о упеш	шио те	ппоемиості	ПК-1
металлосодерж		-	•	•		111(1
Компоненты		С, Дж/(мол		веден в	Таслице	
CuFeS ₂	37,82	86,2				
Fe ₇ S ₈	44,96	318,5				
Fe ₃ O ₄	6,62	150,79				
SiO_2	5,10	44,43				
Прочие	5,50	-				
	,	1				
1. ~0,62 кДж/(кг⋅К)						
2. ~0,75 кДж/(кг⋅К)						
3. ~0,51 кДж/(кг⋅К)						
4. ~0,88 кДж/(кг⋅К)						
10. Выбрат		<u> </u>	приг	опии	й ппа	ПК-1
вытеснения		-	-		и для	1110 1
Me Zn		Со	Ni		Cu	
ϵ°, B -0.7		-0,270	-0,23		+ 0,34	
1. Co		0,270	0,23		1 0,5 1	
2. Zn						
3. N i						
4.Cu						
		TAŬI TIT	7711 2	о пос.	кошей	ПК-1
11. При плавке на штейн шихты, содержащей 28,98 т серы, десульфуризация составила 70%,				1117-1		
получен штейн с содержанием 8,44 т серы. Сколько						
серы перешло в шлак?						
1. 0,25 т						
2. 0,45 1						
3. 0,32 1	<u>l</u> '					

4. 0,41 т	
12. Для чего в медный электролит добавляют ПАВ волгонат? 1. Для уменьшения дендритообразования 2. Для уменьшения испарения электролита 3. Для повышения электропроводности электролита 4. Для исключения загидрачивания катода	ПК-1
13. В состав медного электролита не входит: 1. Серная кислота 2. Сульфат меди 3. Сульфонат 4. Хлорид натрия	ПК-1
14. При плавке в печи Ванюкова на Медном заводе получают:	ПК-1
15. Из пирротинового концентрата получают: 1. Рудный концентрат 2. Сульфидный концентрат 3. Серо-сульфидный концентрат 4. Серный концентрат	ПК-1
16. Какая из приведенных реакций является реакцией образования фаялита? 1. MeS+CaO+C ↔ Me+CaS +CO ₂ 2. CuFeS ₂ =Cu ₂ S+2FeS+ ¹ / ₂ S 3. Cu ₂ O+ FeS↔Cu ₂ S+FeO 4. 2FeO+SiO ₂ =(FeO) ₂ ·SiO ₂	ПК-1
17. Какое из перечисленных свойств шлака ухудшается с ростом в нем содержания СаО? 1. Плотность 2. Растворимость штейна 3. Вязкость 4. Межфазное натяжение	ПК-1
18. К процессам с плавкой в расплаве не относится: 1. Процесс Мицубиси 2. Процесс взвешенной плавки 3. Плавка в жидкой ванне 4. Процесс Норанда	ПК-1

19. Какое из перечисленных соединений является	ПК-1
ферритом?	
$1.2 \text{FeO} \cdot \text{SiO}_2$	
2. FeO·A1 ₂ 0 ₃	
3. Fe O · Fe ₂ O ₃	
4. CaO·SiO ₂	
_	
20. Какой из приведенных сульфидов не является	ПК-1
низшим?	
1. Fe S	
2. CuS	
3. C u ₂ S	
$4. Ni_3S_2$	
21. При электролитическом рафинировании меди	ПК-1
при растворении анода в раствор не переходит:	
1. Zn	
2. S b	
3. A s	
4. T e	
22. Рассчитать массу медного никельсодержащего штейна при	ПК-1
плавке шихты с содержанием Си – 55 % на штейн, при извлечении в	
штейн Cu – 98 % и содержании её в шихте 22,65 т.	
1. 40,36 т	
2. 51,45 T	
3. 39,03 T	
4. 30,08 T	
4. 30,06 1	
23. Рассчитать массу серы элементарной в 100 т сульфидного	ПК-1
концентрата, если он содержит ковеллин CuS, миллерит NiS,	
троилит FeS, элементарную серу и прочие и имеет химический	
состав, %: 9,06 Ni, 3,66 Cu, 33,2 Fe, 27,5 S.	
1. 5,75 T	
2. 6,45 T	
,	
3. 9,03 T	
4. 8,08 т	
24. Определить, какое количество теплоты выделится при	ПК-1
получении 1,25 т металлической меди при 25°С и атмосферном	
давлении	
$Cu_2O + CO = 2Cu + CO_2$	
Теплоты образования веществ, участвующих в реакции:	
$\Delta_f H^{\circ}_{298} (Cu_2O)_{(\kappa)} = -173,18 \text{ кДж/моль}$	
$\Delta_f H^{\circ}_{298} (CO)_{(r)} = -110,53 \text{ кДж/моль}$	
$\Delta_f H^{\circ}_{298} ({ m CO}_2)_{(\Gamma)} = -393{,}51 \;\; кДж/моль$	
1. ~2144 кДж	
2. ~1260 кДж	

3. ~1164 МДж 4. ~1072 МДж	
25. Рассчитать физическую теплоту шихты при 19°C, если масса шихты 75 кг, а удельная теплоемкость 0,91 кДж/(кг·К). 1. ~1381 кДж 2. ~1297 кДж 3. ~1068 кДж 4. ~1674 кДж	ПК-1

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
1. Молярная масса пентландита (Fe,Ni) ₉ S ₈ :	ПК-1
1. 779 г/моль	
2. 843 г/моль	
3. 976 г/моль	
4. 1291 г/моль	
2. Вычислить содержание никеля в моихуките Cu ₉ (Fe,Ni) ₉ S ₁₆ ?	ПК-1
1. 35,90%	
2. 25,01%	
3. 28,15%	
4. 36,02%	
3. В процессе железоочистки железистых хвостов, образующихся при	ПК-1
серосульфидной флотации, протекает реакция	
$2FeSO_{4+1}/_{2}O_{2}+7H_{2}O+2CaCO_{3}=2Fe (OH)_{3}+2CaSO_{4}\cdot 2H_{2}O+2CO_{2}\uparrow.$	
Сколько потребуется известняка, если по реакции расходуется 23,88	
кг FeSO ₄ ?	
1. 10,11 кг	
2. 11,05 кг	
3. 15,71 кг	
4. 18,81 кг	
4. При автоклавном выщелачивании пирротинового концентрата	ПК-1
окисление халькопирита происходит по реакции:	
$5\text{CuFeS}_2 + 9,5\text{O}_2 + 7\text{H}_2\text{SO}_4 = 5\text{CuSO}_4 + 5\text{FeSO}_4 + 7\text{S}^\circ + 7\text{H}_2\text{O}.$	
Сколько необходимо затратить м ³ кислорода для окисления 0,8 кг	
халькопирита?	
$1. 1,122 \text{ M}^3$	
$2. 0,706 \text{ m}^3$	
$3.0,185 \text{ m}^3$	

4. 1,03	52 м ³		
5. Истинная мо.	пярная тепло	ремкость для O ₂ в интервале 298-3000 К	ПК-1
выражается ура	-		
	$C_p =$	$=31,46+3,39\cdot10^{-3} T-3,77\cdot10^5 T^{-2},$	
Рассчитать исти °C.	инную моляр	оную теплоемкость кислорода при 1227	
	,63 Дж/(молі	ь·K)	
	, 29 Дж/(молі	,	
	,40 Дж/(молі	,	
4. 2~8	,99 Дж/(молі	ь·K)	
6. Молярная теп	лоемкость су	льфида железа (II) FeS при температуре	ПК-1
	50,54 Дж/(м	оль К). Чему равняется его удельная	
теплоемкость?			
	Дж/(г·К)		
	Дж/(г·К)		
	Дж/(г·К)		
4. 0,57	Дж/(г∙К)		
7. Какому мине	ралу соответ	гствует формула Cu ₂ S?	ПК-1
1. Хал	ькопирит		
2. Пен	тландит		
3. Хал			
4. Куб	анит		
8. Формула маг	нетита?		ПК-1
1. Fe ₃ C			
2. Ni ₃ S	2		
3. (FeC	$O)_2 \cdot SiO_2$		
4. Fe ₇ S	8		
9. Найти при те	мпературе 2	5°C среднюю удельную теплоемкость	ПК-1
металлосодерж	ащей шихты	, состав которой приведен в таблице	
Компоненты	Масса, кг	С, Дж/(моль·К)	
CuFeS ₂	27,82	86,2	
Fe ₇ S ₈	44,92	318,5	
Fe ₃ O ₄	16,62	150,79	
SiO_2	4,14	44,43	
Прочие	6,50	-	
$1. \sim 0.6$	52 кДж/(кг∙К		
	⁷ 5 кДж/(кг∙К)	
3.~0,5	5 кДж/(кг к 53 кДж/(кг∙К 58 кДж/(кг∙К)	

для ко	перечислез торого оста металлов-цеме	авшиеся м		рать металл ригодны в	, ПК-1
Me	Zn	Cd	Ni	Fe	\neg
ε°, Β	-0,763	-0,402	-0,23	- 0,44	
	1. C d 2. N i 3. Zn 4. F e	, 3,102	1 3,=5	7,11	
т серы, добразова триокс 1 2 3	(есульфури	зация сос [,] серы? При	тавила 75 расчетах	считаем, чт	
хлорид		ения потер ения испарен ишения эл	оь серебра ия электроли ектропро	ı тта	ПК-1
	2. FeS \rightarrow 0 3. Cu ₂ S \rightarrow		сульфидо S → F e S S ₂ → C o S ₃ S ₂ → F e S		ПК-1
направ	ейн печей ляют на: 1. Огневое р 2. Электролит 3. Конверти 4. Обезмежи	рафиниров ическое рафи ирование	ание		ПК-1

15. Сульфидный концентрат направляют на переработку в: 1. Печь Ванюкова 2. Печь взвешенной плавки 3. Электропечь 4. Конвертер	ПК-1
16. Какая из приведенных реакций не относится к реакциям шлакообразования? 1. Cu ₂ O+FeS↔Cu ₂ S+FeO 2. 3Fe ₃ O ₄ + FeS + 5SiO ₂ = 5Fe ₂ SiO ₄ + SO ₂ 3. 3Fe ₃ O ₄ + FeS = 10FeO + SO ₂ 4. 2FeO+SiO ₂ =(FeO) ₂ ·SiO ₂	ПК-1
17. Какое из перечисленных свойств шлака улучшается с ростом в нем содержания $A1_20_3$? 1. Плотность 2. Плавкость 3. Вязкость. 4. Межфазное натяжение	ПК-1
18. К автогенным агрегатам не относится: 1. Плавка в жидкой ванне 2. Печь взвешенной плавки 3. Рудно-термическая печь 4. Агрегат Норанда	ПК-1
19. Никелевый шлак получают при проведении процесса:	ПК-1
20. В качестве сульфидизатора нельзя использовать: 1. Штейн 2. Руду 3. Черновую медь 4. Пирит	ПК-1

21. Какой процесс протекает на аноде при обезмеживании медного электролита электроэкстракцией со свинцовыми анодами? 1. Cu - 2e → Cu²+ 2. Cu - e → Cu²+ 3. Cu²+ - e → Cu²+ 4.2 H ₂ O-4e → 4 H²+O ₂	ПК-1
22. Рассчитать массу медно-никелевого штейна, образующегося при плавке шихты в ПВП, содержащей Cu — 13,50 т, Ni — 9,09 т, если извлечение в штейн Cu — 97 %, Ni — 96 %, а суммарное содержание меди и никеля в штейне составляет 38 %. 1. 44,42 т 2. 57,42 т 3. 52,03 т 4. 38,71 т	ПК-1
23. Рассчитать массу троилита в 100 кг бедных оборотов, содержащих халькозин Cu ₂ S, хизлевудит Ni ₃ S ₂ , троилит FeS и прочие, если известен её химический состав (%): Cu-7,14, Ni-1,19; S-4,6 и прочие. 1. ~5,04 кг 2. ~6, 56 кг 3. ~7,03 кг 4. ~5,57 кг	ПК-1
24. Определить, какое количество теплоты выделится при получении 0,19 т металлического кобальта при 25°С и атмосферном давлении $CoO+CO = Co + CO_2$ Теплоты образования веществ, участвующих в реакции: $\Delta_f H^{\circ}_{298} (CoO)_{(\kappa)} = -239,74 \text{ кДж/моль}$ $\Delta_f H^{\circ}_{298} (CO)_{(r)} = -110,53 \text{ кДж/моль}$ $\Delta_f H^{\circ}_{298} (CO)_{(r)} = -393,51 \text{ кДж/моль}$ $1. \sim 152 \text{ кДж}$ $2. \sim 120 \text{ кДж}$ $3. \sim 139 \text{ МДж}$ $4. \sim 118 \text{ МДж}$	ПК-1
25. Рассчитать физическую теплоту шихты при 27 °C, если масса шихты 1,7 т, а удельная теплоемкость 0,69 кДж/(кг·К). 1. ~32 МДж 2. ~27 МДж 3. ~48 МДж 4. ~16 МДж	ПК-1

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
1. Молярная масса железистого халькопирита $Cu_{0,9}Fe_{1,14}Ni_{0,01}S_2$	ПК-1
1. 186 г/моль	
2. 548 г/моль	
3. 276 г/моль	
4. 143 г/моль	
2. Вычислить содержание железа в пентландите (Fe,Ni) ₉ S ₈ :	ПК-1
1. 35,98%	
2. 29,01%	
3. 48,15% 4. 39,04%	
· · · · · · · · · · · · · · · · · · ·	THC 1
3. В процессе железоочистки железистых хвостов, образующихся при серосульфидной флотации, протекает реакция	ПК-1
$2FeSO_{4+}^{1/2}O_{2}+7H_{2}O+2CaCO_{3}=2Fe (OH)_{3}+2CaSO_{4}\cdot 2H_{2}O+2CO_{2}\uparrow$.	
Сколько образуется углекислого газа, если по реакции расходуется 23,88 кг FeSO ₄ ?	
$1.2,11 \text{ m}^3$	
$2.3,51 \text{ m}^3$	
$3.4,92 \text{ m}^3$	
$4.3,80 \text{ m}^3$	
4. После автоклавно-окислительного выщелачивания цветные	ПК-1
металлы из окисленной пульпы осаждают железорудными	
окатышами. Осаждение никеля протекает по реакции	
$NiSO_4+ Fe+ S \rightarrow NiS+ FeSO_4$	
Сколько потребуется металлизированных железорудных окатышей	
(МЖО) для осаждения из жидкой фазы пульпы 28,12 кг сульфата	
никеля, если в МЖО содержится 65 % железа?	
1. 14,81 кг 2. 17,05 кг	
2. 17,03 кг 3. 15,63 кг	
4. 16,31 кг	
	ПИ 1
5. Истинная молярная теплоемкость для диоксида серы SO ₂ в	ПК-1
интервале 298-2000 К выражается уравнением $C_p = 46.19 + 7.87 \cdot 10^{-3} T - 7.70 \cdot 10^5 T^{-2}$,	
Рассчитать истинную молярную теплоемкость кислорода при 1127	
°C.	
1. ~59,93 Дж/(моль∙К)	
2. ~68,29 Дж/(моль·К)	
3. ~56,81 Дж/(моль⋅К)	
4. ~48,99 Дж/(моль∙К)	

6. Молярная теп	поемкость гемат	ита БеоОз при т	гемпературе 25	5°C	ПК-1
составляет 50,54		-			1111 1
теплоемкость?	ди (моль п.).	ему равилетел	тего удельная		
	Дж/(г·К)				
	Дж/(г·К)				
·	Дж/(г·К)				
	Дж/(г∙К)				
-)					
7. Какому мине	ралу соответств	ует формула С	CuS?		ПК-1
1. Кове	ллин				
2. Пент	гландит				
3. Халн	ькозин				
4. Куба	анит				
8. Формула крег	мнезёма?				ПК-1
1. Fe ₃ O					
2. Ni ₃ S					
3. (FeO					
4. SiO_2	·				
0 11 2	25.00	1			ПК-1
9. Найти при те		-	•		11K-1
металлосодержа	ащеи шихты, со	став которои п	риведен в таолі	ице	
Компоненты	Масса, кг	С, Дж/(мол	r·K)		
CuFeS ₂	17,82	86,2			
NiFeS ₂	6,62	86,2			
Fe_7S_8	57,96	318,5			
SiO_2	13,10	44,43			
Прочие	4,50				
1	72 кДж/(кг·К)				
· · · · · · · · · · · · · · · · · · ·	2 кдж/(кг·К) 5 кДж/(кг·К)				
	3 кДж/(кг∙К)				
	/8 кДж/(кг·К).				
70,7	окдж (кі к).				
10. Выбраті	ь металл-цем	ентатор, при	годный д	пя	ПК-1
-	из раствора ост				
Me Co		C d	Ni	Fe	
ε°, Β -0	,270	-0,402	-0,23	- 0,44	
1. C d	1				
2. Co					
3. Fe					
4.Ni					

11. При плавке на штейн шихты, содержащей 33,5	ПК-1
тсеры, десульфуризация составила 74%. Сколько	
образовалось триоксида серы? Отношение S_{SO2} : $S_{SO3} = 9:1$.	
1. ~5,5 T	
2. ~7,4 т	
3. ~8,2 т	
4. ~6,2 T	
<u> </u>	
12. Катофарез приводит к:	ПК-1
1. Загидрачиванию катода	
2. Уменьшению испарения электролита	
3. Повышению электропроводности	
электролита	
4. Повышению потерь драгметаллов	
13. При расчете удельного проплава печи	ПК-1
используют размер металлургического агрегата:	
1. Высоту печи	
2. Площадь пода печи	
3. Площадь свода печи	
4. Длину печи	
4.Длипу печи	
14. Шлак печи Ванюкова направляют на:	ПК-1
1. Хранение в шлакоотвал	
2. Огневое рафинирование	
3. Конвертирование	
4. Обеднение	
15. Наиболее медленная стадия процесса плавки	ПК-1
на штейн:	
1. Испарение воды	
2. Диссоциация высших сульфидов	
3. Окисление сульфидов	
4. Разделение жидких продуктов плавки	
16. Какая из приведенных реакций не протекает	ПК-1
при конвертировании?	
$1.3 \operatorname{Fe}_{3} \operatorname{O}_{4} + \operatorname{Fe} \operatorname{S} + 5 \operatorname{Si} \operatorname{O}_{2} \leftrightarrow 5 (\operatorname{Fe} \operatorname{O})_{2} \cdot \operatorname{Si} \operatorname{O}_{2} + \operatorname{SO}_{2}$	
2. $CuFeS_2 = Cu_2S + 2FeS + \frac{1}{2}S$	
$3.3 \text{ Fe S} + 5 \text{ O}_2 = \text{Fe}_3 \text{ O}_4 + 3 \text{ SO}_2$	
$4. 2 \operatorname{FeO} + \operatorname{SiO}_2 = (\operatorname{FeO})_2 \cdot \operatorname{SiO}_2$	
17. В какой из перечисленных печей получают	ПК-1
металлизированнй штейн?	
1. Печь Ванюкова	
2. Электропечь	
3. Печь взвешенной плавки	
4.Отражательная печь	

18. Управлять процессом десульфуризации невозможно в: 1. Процесс Мицубиси 2. Печь взвешенной плавки 3. Рудно-термическая печь 4. Печь Норанда	ПК-1
19. Файнштейн получают при проведении процесса:	ПК-1
20. Что в первую очередь окисляется при окислительной обработке черновой меди в процессе огневого рафинирования: 1. Си 2. Fe 3. Со 4. Ni	ПК-1
21. Электроэкстракцию отсеченного из товарных ванн медного электролита производят до остаточного содержания 0,5 ÷ 3 г/л меди из-за: 1. Загрязнения катодного металла примесями 2. Выделения водорода 3. Выделения ядовитого летучего As H ₃ 4. Перехода на катод драгметаллов	ПК-1
22. Рассчитать массу медного никельсодержащего штейна при плавке шихты на штейн, с содержанием Cu – 60 %, при извлечении в штейн Cu – 97,5 % и содержании её в шихте 23,15 т. 1. 40,36 т 2. 41,45 т 3. 37,62 т 4. 30,08 т	ПК-1
23. Рассчитать массу Cu_2O в 100 кг бедных оборотов, содержащих халькозин Cu_2S , хизлевудит Ni_3S_2 , закись меди Cu_2O и прочие, если известен её химический состав (%): Cu -4,32, Ni -2,35; S -1,25 и прочие. 1. \sim 5,04 кг 2. \sim 4, 56 кг 3. \sim 3,65 кг 4. \sim 2,57 кг	ПК-1

24. Определить, какое количество теплоты выделится при получении 0,04 т металлического кобальта при 25°С и атмосферном давлении $CoO+CO=Co+CO_2$ Теплоты образования веществ, участвующих в реакции: $\Delta_f H^\circ_{298} (CoO)_{(\kappa)} = -238,69 \ \text{кДж/моль}$ $\Delta_f H^\circ_{298} (CO)_{(r)} = -110,53 \ \text{кДж/моль}$ $\Delta_f H^\circ_{298} (CO_2)_{(r)} = -393,51 \ \text{кДж/моль}$ $1. \sim 21 \ \text{кДж}$ $2. \sim 30 \ \text{кДж}$ $3. \sim 30 \ \text{МДж}$ $4. \sim 21 \ \text{МДж}$	ПК-1
25. Рассчитать физическую теплоту шихты при 57°C, если масса шихты 0,57 т, а удельная теплоемкость 0,79 кДж/(кг·К). 1. ~32 МДж 2. ~26 МДж 3. ~48 МДж 4. ~16 МДж.	ПК-1