Документ подписан простой электронной подписью Информация о владельце:

ФИО: Игнатенко Виталий Иванович Министерство науки и высшего образования РФ Должность: Проректор по образовательной деятельности и молодежной политике Дата подписания Редеральное государственное бюджетное образовательное учреждение Уникальный программный ключ: высшего образования

а49ае343аf5448d45d7e3e1e499659da8109ba78 **«Заполярный государственный университет им. Н. М. Федоровского»**

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Углубленное моделирование систем электроснабжения в МАТLAВ

Уровень образования: магистратура
Кафедра электроэнергетики и автоматики
Разработчик ФОС:
К.т.н, доцент, Петров Алексей Михайлович
Оценочные материалы по дисциплине рассмотрены и одобрены на заседании кафедры, протокол от $10.02.2025~\mathrm{r}$. № 04
Заведующий кафедрой к.т.н., доцент А.М. Петров

Фонд оценочных средств по дисциплине Углубленное моделирование систем электроснабжения в МАТLAB для текущей/ промежуточной аттестации разработан в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 15.04.04 Автоматизация технологических процессов и производств на основе Рабочей программы дисциплины Углубленное моделирование систем электроснабжения в МАТLAB, Положения о формировании Фонда оценочных средств по дисциплине (ФОС), Положения о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся ЗГУ, Положения о государственной итоговой аттестации (ГИА) выпускников по образовательным программам высшего образования в ЗГУ им. Н.М. Федоровского.

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1. Компетенции и индикаторы их достижения

	_1
Код и наименование компетенции	Индикаторы достижения
УК-6 Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки	УК-6.1 Выбирает основные методы управления и самоконтроля, саморазвития и самообразования на протяжении всей жизни.
ПК-4 Способен разрабатывать функциональную, логическую и техническую организацию автоматизированных и автоматических производств, их элементов, технического,	ПК-4.1 Разрабатывает функциональную, логическую и техническую организацию автоматизированных и автоматических производств и их элементов ПК-4.2 Разрабатывает программное обеспечение
алгоритмического и программного обеспечения на базе современных методов, средств и технологий проектирования	на базе современных методов, средств и технологий проектирования

Таблица 2. Паспорт фонда оценочных средств

	Valuena luinivalti la manualti	Код результата	Оценочные средства текущей аттестации		Оценочные средства промежуточной аттестации	
№ п/п	Контролируемые разделы (темы) дисциплины	обучения по дисциплине/ модулю	Наименование	Форма	Наименование	Форма
2 семестр						

2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы.

2.1. Задания для текущего контроля успеваемости

- 1. Понятие моделирования.
- 2. Классификация математических моделей по принципу реализации, по точности, по фактору времени (статические и динамические).
- 3. Математическое моделирование. Требования, предъявляемые к математическим моделям.
- 4. Понятия подобия и адекватности модели.
- 5. Понятие эксперимента и его классификация.
- 6.Основы работы в математическом пакете Mathworks Matlab.
- 7. Основы работы в математическом пакете National Instrumenst Multisim.
- 8. Математическая модель трехфазного трансформатора с учетом насыщения магнитопровода.
- 9. Математическая модель синхронного генератора.
- 10. Математическая модель двигателя постоянного тока с независимым возбуждением.
- 11. Математическая модель асинхронного двигателя.
- 12. Математическая модель линии с сосредоточенными параметрами.
- 13. Математическая модель линии с распределенными параметрами.
- 14. Типовые динамические звенья.
- 15. Переходные и импульсные функции динамических звеньев.
- 16. Частотные характеристики динамических звеньев.
- 17. Структурные схемы и их преобразование.
- 18. Построение логарифмических частотных характеристик динамических звеньев.
- 19.Структурные схемы замкнутых и разомкнутых САР.
- 20. Стационарные режимы САР.
- 21. Устойчивость линейных САР.
- 22. Качество систем автоматического регулирования.
- 23. Коррекция САР.
- 24.Оптимальные линейные САР.
- 25.Системы автоматического регулирования, настроенные на модульный и симметричный оптимум.
- 26.Математические модели силовой части тиристорных преобразователей с 6-ти и 12-ти пульсными схемами

выпрямления.

- 27. Математическая модель системы импульсно-фазового управления.
- 28.Основные энергетические и электрические показатели тиристорных преобразователей.
 - 29.Высшие гармоники тока, генерируемые тиристорным преобразователем.
- 30.Принципы построения двухконтурной системы подчиненного регулирования скорости двигателя постоянного

тока независимого возбуждения.

- 31. Составление схемы замещения сложнозамкнутой электрической сети.
- 32. Расчет параметров схемы замещения.
- 33. Реализация математической модели сложнозамкнутой электрической сети в

программных пакетах Mathworks

Matlab и National Instruments Multisim.

- 34.Особенности расчета токов и напряжений в сложнозамкнутой электрической цепи в векторной форме.
 - 35. Анализ потерь активной мощности в сложнозамкнутой электрической сети

2.2. Задания для промежуточной аттестации

- 1. Какой инструмент MATLAB используется для моделирования электрических систем?
 - 2. Что такое Simscape в контексте MATLAB?
 - 3. Какие элементы можно моделировать с помощью Simscape Electrical?
- 4. Какой тип анализа можно провести с помощью моделей в MATLAB для систем электроснабжения?
 - 5. Как в MATLAB задать параметры компонента электрической системы?
- 6. Какой блок в Simscape Electrical используется для моделирования трёхфазного источника питания?
 - 7. Что необходимо сделать для запуска симуляции модели в Simulink?
- 8. Какие данные можно получить в результате симуляции электрической системы в MATLAB?
- 9. Какой инструмент в MATLAB используется для визуализации результатов симуляции?
- 10. Как можно экспортировать результаты симуляции из MATLAB для дальнейшего анализа?

2.2.1. Контрольные вопросы к экзамену(зачету)

1. Какой	инструмент	MATLAB	испол	іьзуется	для	моделирования
электрических						систем?
a)						Simulink;
b) Simscape						Electrical;
c)		MATLAB				Compiler;
d) Curve Fitting To	oolbox.					
2. Что	такое	Simscape	В	конт	гексте	MATLAB?
а) Библиотека	для модели	рования м	иногодо	менных	физич	неских систем;
b) И1	нструмент	для		анал	иза	данных;
с) Функция	для	решения	дис	ференциа	альных	уравнений;
d) Интерфейс для	работы с базам	ии данных.				
3. Какие	ком ытнэмэлс	кно моделиј	ровать	с помощі	ью Sim	scape Electrical?
a)	Только		исто	чники		питания;
b) Только пасс	сивные компо	ненты (резі	исторы,	конденса	аторы,	индуктивности);
с) Активные и п	ассивные ком	поненты, в	ключая	трансфор	оматор	ы и генераторы;
d) Только механи	ческие системь	I.				
Какой з	гип анализа м	ожно прове	сти с по	мощью м	оделей	в MATLAB для
систем					эле	ктроснабжения?
a)		Анализ				устойчивости;
b)		Гармоничес	кий			анализ;
c)	Анализ		перехо	дных		процессов;
d) Все перечисле	нные вариант	ы.				

3. Nak	в MATLAB зад		ы компонен	нта электрич	еской системы?
a) Y	Герез	графический	И	нтерфейс	Simulink;
b)	В	командной	c	троке	MATLAB;
с) С помо	щью блок	ов парам	етров в	Simscap	pe Electrical;
	вадаются автома				
Како	ой блок в Sin	nscape Electr	ical исполь	зуется для	моделирования
трёхфазного		источ	ника		питания?
a)	AC		Current	t	Source;
b)	DC		Voltage	e	Source;
c) Three-Phase					Source;
d) Electrical Re	ference.				
7. Что	необходимо сд	елать для за	-		ели в Simulink?
a)	Изменить	•	парамет	гры	модели;
b) Нажать	кнопку	«Run»	на	панели	инструментов;
c)	Запустить	скри	ПТ	В	MATLAB;
d) Сохранить м	юдель.				
8. Каки	е данные мож	но получить	в результат	е симуляции	и электрической
OTTOTOTAL T					
системы		В			MATLAB?
a)		жение		И	MATLAB?
	Напря Мощно	жение	И		
a)		жение	И		ток;
a) b) c) d) Все перечис	Мощно сленные вариан	жение ость Частотные нты.			ток; энергия;
a) b) c)	Мощно сленные вариан	жение ость Частотные нты.			ток; энергия; характеристики;
а) b) c) d) Все перечис 9. Како результатов	Мощно сленные вариан	жение ость Частотные нты.			ток; энергия; характеристики;
а) b) c) d) Все перечис 9. Како результатов a) Scope;	Мощно сленные вариан	жение ость Частотные нты.			ток; энергия; характеристики; визуализации симуляции?
а) b) c) d) Все перечис 9. Како результатов а) Scope; b)	Мощно сленные вариан	жение ость Частотные нты. г в МАТL	АВ исполь		ток; энергия; характеристики; визуализации симуляции? Workspace;
a) b) c) d) Все перечис 9. Како результатов а) Scope; b) c)	Мощно сленные вариан	жение ость Частотные нты.	АВ исполь		ток; энергия; характеристики; визуализации симуляции?
a) b) c) d) Все перечис 9. Како результатов а) Scope; b) c) d) Editor.	Мощно сленные вариат й инструмен	жение ость Частотные нты . г в МАТ L	АВ испо ль	зуется для	ток; энергия; характеристики; визуализации симуляции? Workspace; Window;
а) b) c) d) Все перечис 9. Како результатов а) Scope; b) c) d) Editor. 10. Как	Мощно сленные вариат й инструмен	жение ость Частотные нты . г в МАТ L	АВ испо ль	зуется для	ток; энергия; характеристики; визуализации симуляции? Workspace; Window; з МАТLAВ для
a) b) c) d) Все перечис 9. Како результатов а) Scope; b) c) d) Editor. 10. Как дальнейшего	Мощно сленные вариан ой инструмен с можно экспо	ость Частотные нты. г в МАТL	АВ испо ль	зуется для	ток; энергия; характеристики; визуализации симуляции? Workspace; Window; з МАТLАВ для анализа?
а) b) c) d) Все перечис 9. Како результатов а) Scope; b) c) d) Editor. 10. Как дальнейшего а) Через	Мощно зариан инструмент можно экспо функцию	жение ость Частотные нты. г в MATLA Соттапа ртировать ре	АВ испо ль	зуется для	ток; энергия; характеристики; визуализации симуляции? Workspace; Window; з МАТLАВ для анализа? МАТLАВ;
а) b) c) d) Все перечис 9. Како результатов а) Scope; b) c) d) Editor. 10. Как дальнейшего а) Через b)	Мощно вариан инструмент можно экспо функцию Результаты	жение ость Частотные нты. г в MATL Соттаnd ртировать ре «Save»	АВ исполь зультаты с или нельзя	зуется для имуляции и скрипты	ток; энергия; характеристики; визуализации симуляции? Workspace; Window; з MATLAB для анализа? MATLAB; экспортировать;
а) b) c) d) Все перечис 9. Како результатов а) Scope; b) c) d) Editor. 10. Как дальнейшего а) Через b) c) толь	Мощно сленные вариан инструмент инструмент можно экспо функцию Результаты	жение ость Частотные нты. г в МАТL Соттапа ртировать ре «Save»	АВ исполь зультаты с или нельзя ческий	зуется для имуляции и	ток; энергия; характеристики; визуализации симуляции? Workspace; Window; з MATLAB для анализа? MATLAB; экспортировать;

2.2.2. Типовые экзаменационные задачи

Задача 1: Моделирование теплообмена в теплообменнике

- Описание: Разработайте математическую модель теплообменника "труба в трубе" для противоточного движения теплоносителей. Учтите переменные теплофизические свойства теплоносителей и изменение температуры по длине теплообменника.
- Требования:
 - о Выведите систему дифференциальных уравнений, описывающих процесс теплообмена.
 - о Разработайте алгоритм численного решения полученной системы уравнений.
 - о Проведите анализ влияния различных параметров (расход теплоносителей, температура на входе, коэффициент теплопередачи) на эффективность теплообменника.
 - о Предложите меры по оптимизации работы теплообменника.
- Инструменты: MATLAB/Simulink, Aspen Plus, COMSOL Multiphysics.

Задача 2: Моделирование динамики химического реактора

• Описание: Создайте динамическую модель идеального реактора смешения с экзотермической реакцией. Учтите изменение концентрации реагентов, температуры и давления во времени.

• Требования:

- о Сформулируйте систему дифференциальных уравнений, описывающих кинетику реакции, тепловой баланс и материальный баланс в реакторе.
- о Проанализируйте устойчивость стационарных состояний реактора.
- о Разработайте систему автоматического регулирования температуры реактора на основе ПИД-регулятора.
- о Проведите моделирование переходных процессов при различных возмущениях (изменение расхода реагентов, изменение температуры охлаждающей воды).
- Инструменты: MATLAB/Simulink, gPROMS ModelBuilder, DWSIM.

Задача 3: Моделирование логистической системы складского комплекса

• Описание: Разработайте имитационную модель логистической системы складского комплекса, включающую процессы приемки, хранения, комплектации и отгрузки товаров. Учтите случайные факторы (изменение интенсивности поступления заказов, время обработки заказов).

• Требования:

- о Определите структуру модели и основные элементы системы.
- о Разработайте алгоритм работы системы и правила принятия решений.
- о Проведите анализ пропускной способности системы и определите узкие места.
- о Предложите мероприятия по оптимизации работы складского комплекса (изменение схемы расположения зон хранения, изменение алгоритма комплектации заказов).
- Инструменты: AnyLogic, Arena Simulation, Plant Simulation.

Задача 4: Моделирование работы системы управления технологическим процессом

• Описание: Разработайте модель системы управления технологическим процессом дистилляции. Система должна включать датчики, исполнительные механизмы и контроллер.

• Требования:

- о Создайте модель объекта управления (дистилляционной колонны) на основе передаточных функций или уравнений состояния.
- о Разработайте схему автоматического управления процессом (например, регулирование температуры верха колонны и уровня жидкости в кубе).
- о Настройте параметры регуляторов и проведите моделирование системы в замкнутом контуре.
- о Оцените качество управления (перерегулирование, время установления) при различных возмущениях и изменениях параметров объекта управления.
- Инструменты: MATLAB/Simulink, LabVIEW, TIA Portal.

Задача 5: Моделирование электромеханической системы привода технологического оборудования

• Описание: Разработайте модель электромеханической системы привода конвейера, включающую электродвигатель, редуктор, механическую передачу и ленту конвейера с грузом.

• Требования:

- о Сформулируйте систему уравнений, описывающих динамику электродвигателя, редуктора и конвейера.
- о Проанализируйте влияние различных параметров (момент инерции груза, коэффициент трения, передаточное число редуктора) на динамику системы.

- о Разработайте систему управления скоростью конвейера на основе обратной связи.
- о Проведите моделирование пуска, остановки и реверса конвейера. **Инструменты:** MATLAB/Simulink, EPLAN Electric P8.

2.2.3. Темы/задания курсовых проектов/курсовых работ

- 1. Тонкие процедуры рангового анализа
- 2. Моделирование процесса электропотребления техноценоза в пакете MathCad
- 3. Определение потенциала энергосбережения техноценоза
- 4. Прогнозирование электропотребления Z-методом
- 5. Нормирование электропотребления в техноценозе