Документ подписан простой элект Мийистерство науки и высщего образования РФ
Информация о вление ральное государственное бюджет ное образовательное учреждение ФИО: Игнатенко Виталий иванович
Должность: Проректор по образовательной деятельности и мвысщего образовательное учреждение должность: Проректор по образовательной деятельности и мвысщего образовательное учреждение должность: Проректор по образовательной деятельности и мвысщего образовательное учреждение должность: Проректор по образовательной деятельности и мвысщего образования ное образовательное учреждение должность: Проректор по образовательное учреждение дата подписанка Запомя ривый государственный университет им. Н. М. Федоровского» Уникальный программный ключ:

3ГУ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

"Введение в ЗД-сканирование"

Факультет: горно-технологический ГТФ		
Направление подготовки: <u>15.03.02</u> «Техно	ологические машины и о	борудование»
Направленность (профиль): «Цифровой и	нжиниринг и 3D-печать	<u>»</u>
Уровень образования: <u>бакалавриат</u> Кафедра «Технологические машины и обор наименование кафедры	у <u>дование</u> »	
Разработчик ФОС:		
к.т.н., доцент		Лаговская Е.В.
(должность, степень, ученое звание)	(подпись)	(ФИО)
Оценочные материалы по дисциплино кафедры, протокол № <u>9</u> от « <u>20</u> Заведующий кафедрой <u>к.т.н., доцент</u>	» <u>06</u> 2024 г.	брены на заседании

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения	
компетенции		
ОПК-1: Способен применять	ОПК-1.1: Способен применять методы математического	
естественнонаучные и	анализа в профессиональной деятельности	
общеинженерные знания,	ОПК-1.2: Способен применять естественнонаучные знания в	
методы математического анализа	профессиональной деятельности	
и моделирования в	ОПК-1.3: Способен применять общеинженерные знания в	
профессиональной деятельности;	профессиональной деятельности	

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые	Формируемая	Наименование	
разделы (темы)	компетенция	оценочного	Показатели оценки
дисциплины		средства	
Теоретические основы ЗД-	ОПК-1	Список	Составление
сканирования		литературных	систематизированного
		источников по	списка использованных
		тематике,	источников, решение теста
		тестовые задания	
Программное обеспечение	ОПК-1	Список	Составление
ЗД-сканирования		литературных	систематизированного
		источников по	списка использованных
		тематике,	источников, решение теста
		тестовые задания	
Приобретение	ОПК-1	Список	Составление
практических навыков по		литературных	систематизированного
ЗД-сканированию		источников по	списка использованных
		тематике,	источников, решение теста
		тестовые задания	
Паянные и клеевые	ОПК-1	Список	Составление
соединения		литературных	систематизированного
		источников по	списка использованных
		тематике,	источников, решение теста
		тестовые задания	

2. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетениий

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

Наименование оценочного средства	1		Я	Критерии оценивания		
Промежуточная аттестация в 4 семестре в форме «Зачет»						
Тестовые задания	В течении	ОТ	0	до	5	Зачет/Незачет

Наименование	Сроки	Шкала	Критерии
оценочного средства	выполнения	оценивания	оценивания
	обучения по	баллов	
	дисциплине		
ИТОГО:	-	баллов	-

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

Задания для текущего контроля и промежуточной аттестации

Для очной формы обучения Задания для текущего контроля и сдачи зачета по дисциплине

	ОЦЕНОЧНОЕ СРЕДСТВО				
	(тестирование)				
	Вариант 1				
1.	В каком десятилетии начались первые эксперименты с использованием				
	лазеров для измерения трехмерных объектов?				
1)	1940-е годы				
2)	1960-е годы				
3)	1980-е годы				
4)	2000-е годы				
2.	Какой из перечисленных сканеров стал одним из первых коммерческих				
	3D-сканеров?				
1)	Microsoft Kinect				
2)	Cyberware 3D Scanner				
3)	Faro Focus				
4)	Artec Eva				
3.	В какой области применяется 3D-сканирование для создания протезов?				
1)	Архитектура.				
2)	Медицина.				
3)	Искусство.				
4)	Картография.				
4.	Какая технология используется для сканирования больших				
	ландшафтов?				
1)	Фотограмметрия.				
2)	LiDAR.				
3)	Контактное сканирование.				
4)	Структурированная подсветка.				

- **5.** Какое устройство использует структурированную подсветку для сканирования?
- 1) Faro Focus.
- 2) Artec Eva.
- 3) Microsoft Kinect.
- 4) Leica ScanStation.
- 6. В какой области 3D-сканирование используется для контроля качества изделий?
- 1) Медицина.
- 2) Промышленность.
- 3) Искусство.
- 4) Образование.
- 7. Какая технология сканирования используется в смартфонах для создания 3D-моделей?
- 1) Фотограмметрия.
- 2) LiDAR.
- 3) Ультразвуковое сканирование.
- 4) Контактное сканирование.
- 8. Что используется в методе структурированного освещения для создания 3D-модели?
- 1) Лазерный луч
- 2) Инфракрасные лучи
- 3) Узор из света
- 4) Рентгеновские лучи
- 9. Какую технологию использует бесконтактный 3D-сканер для создания модели на основе серии фотографий?
- 1) Лазерное сканирование
- 2) Фотограмметрию
- 3) Структурированное освещение
- 4) Интерферометрию
- 10. Какой метод бесконтактного 3D-сканирования используется для создания персонажей в видеоиграх?
- 1) Лазерное сканирование
- 2) Фотограмметрия
- 3) Контактное сканирование
- 4) Ультразвуковое сканирование
- 11. Какое программное обеспечение используется для обработки данных, полученных с помощью бесконтактных 3D-сканеров?
- 1) Простое ПО для базовых функций
- 2) Продвинутое ПО с алгоритмами обработки данных
- 3) Специализированное ПО для медицинских исследований
- 4) ПО для работы с фотографиями

12. Какое ограничение у контактных 3D-сканеров при работе с мягкими и хрупкими объектами? Невысокая точность 1) 2) Риск повреждения объекта 3) Долгое время сканирования 4) Высокая стоимость **13.** Какой формат чаще всего используется для хранения данных 3Dсканирования в виде облака точек? **OBJ** 1) 2) STL 3) **PLY** 4) **FBX** Какой формат чаще используется в САД-программах? 14. 1) **OBJ** 2) **STL STEP** 3) 4) **FBX 15.** Какой формат чаще используется для хранения данных лазерного сканирования? 1) E57 2) OBJ 3) STL 4) **FBX 16.** Какой формат используется для хранения данных в виде треугольников? OBJ 1) STL 2) 3) **PLY** 4) **FBX 17.** Какой формат лучше всего подходит для 3D-моделей в Unity? 1) STL 2) **FBX** 3) OBJ 4) **PLY 18.** Что определяет разрешение сканирования? 1) Скорость сканирования. 2) Минимальное расстояние между двумя точками, которые сканер может различить. 3) Расстояние от сканера до объекта.

4) Тип материала, который можно сканировать.

- 19. Какая характеристика определяет минимальную погрешность измерений сканера?
- 1) Разрешение.
- 2) Точность.

- 3) Скорость сканирования.
- 4) Рабочее расстояние.

20. Какая характеристика определяет минимальное расстояние между точками, которые сканер может различить?

- 1) Точность.
- 2) Разрешение.
- 3) Скорость сканирования.
- 4) Поле зрения.

21. Какая характеристика важна для сканирования мелких деталей?

- 1) Точность.
- 2) Разрешение.
- 3) Скорость сканирования.
- 4) Поле зрения.

22. Какая характеристика важна для работы сканера на открытом воздухе?

- 1) Условия эксплуатации.
- 2) Точность.
- 3) Разрешение.
- 4) Скорость сканирования.
- 5) Поддержка цветного сканирования.

23. Как можно преодолеть проблему сканирования прозрачных объектов?

- 1) Использовать более мощный сканер.
- 2) Нанести матирующее покрытие на объект.
- 3) Увеличить скорость сканирования.
- 4) Сканировать объект в темноте.

24. Какая проблема возникает при сканировании движущихся объектов?

- 1) Сканер не может захватить цвет.
- 2) Данные могут быть искажены из-за движения.
- 3) Увеличивается время сканирования.
- 4) Сканер перегревается.

25. Что делать, если сканер плохо захватывает текстуры и цвета?

- 1) Использовать сканер с поддержкой цветного сканирования.
- 2) Увеличить скорость сканирования.
- 3) Уменьшить разрешение сканирования.
- 4) Прекратить сканирование.

ОЦЕНОЧНОЕ СРЕДСТВО

(тестирование)

Вариант 2

1. В каком году был выпущен коммерческий 3D-сканер Cyberware?

- 1) 1975
- 2) 1985
- 3) 1995
- 4) 2005

- 2. Какая технология сканирования активно развивалась в 1990-х годах и использует проекцию узора на объект?
- 1) Лазерное сканирование
- 2) Структурированная подсветка
- 3) Фотограмметрия
- 4) Контактное сканирование

3. Какой метод 3D-сканирования использует множество фотографий объекта?

- 1) Лазерное сканирование.
- 2) Фотограмметрия.
- 3) Контактное сканирование.
- 4) Ультразвуковое сканирование.

4. Какое преимущество 3D-сканирования?

- 1) Низкая точность.
- 2) Высокая детализация и точность.
- 3) Ограниченная область применения.
- 4) Высокая стоимость оборудования.

5. Какой недостаток 3D-сканирования?

- 1) Быстрое сканирование.
- 2) Высокая стоимость оборудования.
- 3) Простота обработки данных.
- 4) Широкая доступность.

6. Какой метод сканирования использует механический зонд?

- 1) Лазерное сканирование.
- 2) Фотограмметрия.
- 3) Контактное сканирование.
- 4) Оптическое сканирование.

7. Какой тип 3D-сканера требует физического контакта с объектом для измерения его геометрических параметров?

- 1) Лазерный сканер
- 2) Контактный сканер
- 3) Фотограмметрический сканер
- 4) Структурный сканер

8. Какое преимущество у контактных 3D-сканеров перед бесконтактными?

- 1) Более высокая скорость сканирования
- 2) Более высокая точность измерений
- 3) Возможность сканирования прозрачных объектов
- 4) Возможность сканирования на большом расстоянии

9. Для каких целей чаще всего используются контактные 3D-сканеры? 1) Создание макетов зданий 2) Производство протезов 3) Сканирование прозрачных объектов 4) Сохранение культурного наследия Какое преимущество у бесконтактных 3D-сканеров при работе с **10.** крупными объектами? 1) Высокая точность 2) Возможность сканирования на большом расстоянии 3) Низкая стоимость 4) Простота настройки 11. Какие данные собирает контактный 3D-сканер при взаимодействии с объектом? 1) Цветовые параметры 2) Геометрические параметры 3) Материальные свойства 4) Тепловые характеристики **12.** Какое оборудование используется в лазерном 3D-сканере для измерения расстояний до объекта? 1) Камера 2) Лазерный дальномер 3) Микрофон 4) Термодатчик **13.** Какой формат лучше всего подходит для передачи данных в ZBrush? 1) STL 2) OBJ **FBX** 3) 4) **PLY 14.** Какой формат лучше всего подходит для анимации и скелетов? 1) **OBJ FBX** 2) 3) **STL** 4) **PLY 15.** Какой формат поддерживает хранение информации о цвете точек? 1) **STL** 2) **PLY** 3) OBJ **FBX** 4) **16.** Какой формат используется для веб-приложений и поддерживает сжатие? **GLTF** 1) OBJ 2) STL 3)

PLY

4)

17. Какой формат лучше всего подходит для передачи данных между CADпрограммами?

- 1) OBJ
- 2) STEP
- 3) STL
- 4) FBX

18. Что такое рабочее расстояние сканера?

- 1) Расстояние от сканера до объекта, на котором он может эффективно работать.
- 2) Время, необходимое для сканирования объекта.
- 3) Область, которую сканер может захватить за один раз.
- 4) Максимальная погрешность измерений.

19. Какая характеристика важна для сканирования движущихся объектов?

- 1) Точность.
- 2) Разрешение.
- 3) Скорость сканирования.
- 4) Рабочее расстояние.

20. Какая характеристика важна для сканирования в труднодоступных местах?

- 1) Портативность.
- 2) Точность.
- 3) Разрешение.
- 4) Скорость сканирования.

21. Какая характеристика важна для сканирования в труднодоступных местах?

- 1) Портативность.
- 2) Точность.
- 3) Разрешение.
- 4) Скорость сканирования.

22. Какая характеристика важна для длительной работы сканера без подзарядки?

- 1) Время автономной работы.
- 2) Точность.
- 3) Разрешение.
- 4) Скорость сканирования.

23. Какая характеристика важна для сканирования объектов в движении?

- 1) Скорость сканирования.
- 2) Точность.
- 3) Разрешение.
- 4) Поле зрения.

- 24. Как можно улучшить качество сканирования сложных геометрий?
- 1) Увеличить скорость сканирования.
- 2) Использовать несколько сканов с разных ракурсов.
- 3) Сканировать только одну сторону объекта.
- 4) Уменьшить разрешение сканирования.
- 25. Какая проблема возникает при сканировании черных поверхностей?
- 1) Поверхность плохо отражает свет.
- 2) Сканер не может захватить цвет.
- 3) Увеличивается время сканирования.
- 4) Сканер перегревается.

ОЦЕНОЧНОЕ СРЕДСТВО

(тестирование)

Вариант 3

- 1. Какое устройство, представленное в 2010-х годах, использовалось для сканирования объектов с помощью смартфонов?
- 1) NextEngine
- 2) Structure Sensor
- 3) Intel RealSense
- 4) Leica ScanStation
- 2. Какая современная технология, используемая в смартфонах, позволяет сканировать окружающую среду?
- 1) GPS
- 2) LiDAR
- 3) RFID
- 4) NFC
- 3. Какая современная технология, используемая в смартфонах, позволяет сканировать окружающую среду?
- 1) GPS
- 2) LiDAR
- 3) RFID
- 4) NFC
- 4. Какой из перечисленных методов НЕ является методом 3Dсканирования?
- 1) Лазерное сканирование.
- 2) Фотограмметрия.
- 3) 3D-печать.
- 4) Структурированная подсветка.
- 5. Какое из устройств используется для лазерного сканирования?
- 1) Microsoft Kinect.
- 2) Faro Focus.
- 3) Structure Sensor.
- 4) iPhone LiDAR.

6. Какая технология сканирования используется в смартфонах для создания 3D-моделей?

- 1) Фотограмметрия.
- 2) LiDAR.
- 3) Ультразвуковое сканирование.
- 4) Контактное сканирование.

7. Как называется метод бесконтактного 3D-сканирования, использующий лазерный луч?

- 1) Фотограмметрия
- 2) Структурированное освещение
- 3) Лазерное сканирование
- 4) Ультразвуковое сканирование

8. Какое ограничение у контактных 3D-сканеров?

- 1) Низкая точность
- 2) Невысокая скорость сканирования
- 3) Сложность настройки
- 4) Высокая стоимость

9. Какое условие окружающей среды может негативно сказаться на работе бесконтактного 3D-сканера?

- 1) Яркий солнечный свет
- 2) Высокая влажность
- 3) Низкая температура
- 4) Все вышеперечисленные условия

10. Какой недостаток у бесконтактных 3D-сканеров?

- 1) Низкая точность для мелких деталей
- 2) Ограниченная область применения
- 3) Медленная скорость сканирования
- 4) Невозможность сканирования крупных объектов

11. Какое преимущество у бесконтактных 3D-сканеров перед контактными?

- 1) Возможность сканирования мягких и хрупких объектов
- 2) Низкая стоимость
- 3) Высокая точность для мелких деталей
- 4) Простота настройки

12. Какой формат подходит для 3D-печати?

- 1) FBX
- 2) STL
- 3) OBJ
- 4) STEP

13. Какой формат поддерживает текстуры и материалы? 1) STL 2) **OBJ** 3) PLY 4) XYZ 14. Какой формат лучше всего подходит для игровых движков? 1) STL 2) **FBX** 3) PLY XYZ 4) 15. Какой формат хранит данные в виде текстового файла? 1) STL (текстовый) 2) **FBX PLY** 3) 4) OBJ **16.** Какой формат не поддерживает анимацию? 1) **FBX** 2) OBJ **GLTF** 3)

4) 3DS

17. Что такое точность сканирования?

- 1) Время, необходимое для сканирования объекта.
- 2) Максимальная погрешность измерений сканера.
- 3) Расстояние от сканера до объекта.
- 4) Область, которую сканер может захватить за один раз.

18. Что такое поле зрения (FOV) сканера?

- 1) Расстояние от сканера до объекта.
- 2) Область, которую сканер может захватить за один раз.
- 3) Время, необходимое для сканирования объекта.
- 4) Тип материала, который можно сканировать.

19. Какая характеристика определяет расстояние от сканера до объекта?

- 1) Рабочее расстояние.
- 2) Поле зрения.
- 3) Точность.
- 4) Разрешение.

20. Какая характеристика определяет время, необходимое для сканирования объекта?

- 1) Точность.
- 2) Разрешение.
- 3) Скорость сканирования.
- 4) Рабочее расстояние.

21. Какая характеристика определяет возможность сканирования отражающих поверхностей?

- 1) Поддержка различных материалов.
- 2) Точность.
- 3) Разрешение.
- 4) Скорость сканирования.

22. Какая проблема возникает при сканировании отражающих поверхностей?

- 1) Объект становится слишком темным.
- 2) Поверхность плохо отражает свет, что приводит к искажениям.
- 3) Сканер не может захватить цвет.
- 4) Увеличивается время сканирования.

23. Что делать, если объект слишком большой для сканирования?

- 1) Использовать сканер с большим рабочим расстоянием.
- 2) Уменьшить разрешение сканирования.
- 3) Разделить объект на части и сканировать по отдельности.
- 4) Отказаться от сканирования.

24. Что делать, если в данных сканирования появляется шум?

- 1) Увеличить скорость сканирования.
- 2) Очистить данные с помощью программного обеспечения.
- 3) Уменьшить разрешение сканирования.
- 4) Прекратить сканирование.

25. Как можно преодолеть проблему большого объема данных?

- 1) Увеличить скорость сканирования.
- 2) Уменьшить разрешение сканирования.
- 3) Оптимизировать сетку (ретопология).
- 4) Прекратить сканирование.