Документ подписан простой элект Мийистерство науки и высшего образования РФ
Информация о влежнеральное государственное бюджет ное образовательное учреждение ФИО: Игнатенко Виталий иванович
Должность: Проректор по образовательной деятельности и междежие подписания Замомя рный государственный университет им. Н. М. Федоровского» Уникальный программный ключ:

а49ае343аf5448d45d7e3e1e499659da8109ba78

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

«Производство меди»

Ф акультет: <u>ГТФ</u>		
Направление подготовки: <u>22.03.02 «Метал</u>	лургия»	
Направленность (профиль): «Прогрессивн	ые методы получения цв	етных металлов»
Уровень образования: <u>бакалавриат</u> Кафедра « <u>Металлургии, машин и оборудова</u> наименование кафедры	«киня	
Разработчик ФОС:		
К.с-х.н., доцент		Носова О.В.
(должность, степень, ученое звание)	(подпись)	(ФИО)

Оценочные материалы по дисциплине рассмотрены и одобрены на заседании кафедры, протокол № $\underline{2}$ от « $\underline{07}$ » $\underline{05}$ 2025 г.

Заведующий кафедрой к.т.н., доцент Крупнов Л.В.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения
компетенции	
ПК-1: Способствует	ПК-1.1: Применяет знания основных закономерностей
осуществлению и	протекания металлургических процессов для повышения
корректировки	эффективности производства цветных металлов
технологических процессов в	
металлургии	ПК-1.2: Использует основные принципы разработки
	технических решений и технологий в области металлурги

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формиру емая компетен ция	Наименование оценочного средства	Показатели оценки
Структура и содержание курса. Классификация медьсодержащего сырья	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Состояние сырьевой базы и перспективы ее развития	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Технологические схемы и основное оборудование	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Подготовка руд и концентратов к металлургической переработке	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Обжиг медных концентратов	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Плавка медных концентратов на штейн	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Переработка штейна на черновую медь	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Непрерывные совмещенные процессы комплексной переработки медьсодержащего сырья	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Огневое рафинирование черновой меди	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Электролитическое рафинирование меди	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Основы гидрометаллургии меди	ПК-1	Тестовые задания	Решение всех тестовых заданий по темам
Зачет	ПК-1	Решение всех тестовых заданий по темам	Решение всех тестовых заданий по темам

1. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	Наименование	Сроки	Шкала	Критерии			
	оценочного средства	выполнения	оценивания	оценивания			
Про	межуточная аттестация в	форме «Зачета»					
	Тестовые задания	В течении	от 0 до 5 баллов	Зачет/Незачет			
		обучения по					
		дисциплине					
ИТС	ОГО:	-	баллов	-			
Кри	Критерии оценки результатов обучения по дисциплине:						
Пор	Пороговый (минимальный) уровень для аттестации в форме						

Пороговый (минимальный) уровень для аттестации в форме зачета — 75 % от максимально возможной суммы баллов Зачет выставляется при сдаче студентом всех тестовых заданий

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

Для очной, очно-заочной формы обучения Задания для текущего контроля и сдачи дисциплины

1. Молярная масса моихукита Cu ₉ (Fe,Ni) ₉ S ₁₆ : Ответ: 1. 158 г/моль.	ПК-1
2. 2123 г/моль.	
3. 1245 г/моль.	
4. 3112 г/моль.	
2. Вычислить содержание магния в карбонате магния MgCO ₃ ?	ПК-1
Ответ: 1. 31,16%.	
2. 26,31%.	
3. 28,57%.	
4. 41,23%.	
3. В процессе железоочистки железистых хвостов, образующихся при серосульфидной флотации, протекает реакция	ПК-1
$2FeSO_{4+}/_{2}O_{2}+7H_{2}O+2CaCO_{3}=2Fe(OH)_{3}+2CaSO_{4}\cdot 2H_{2}O+2CO_{2}\uparrow.$	

	колько потребуется м ³ воздуха, если по реакции расходуется 23,88 кг	
FeS0 ₄ . Ответ:	$1.6,1 \text{ m}^3.$	
	$2. 4.2 \text{ m}^3.$	
	$3. 6.9 \text{ m}^3.$	
	$4.8,8 \text{ m}^3.$	
4 Рассчи	итать массу азота, который занимает при нормальных условиях объем 400	ПК-1
M^3 .	пать массу изота, которын занимает при пормальных условых оовем тоо	11111
Ответ:	1. 190 кг.	
	2. 350 кг.	
	3. 250 кг.	
	4. 500 кг.	
	ная молярная теплоемкость оксида железа (II) FeO в интервале 298–1650 ается уравнением	ПК-1
	$C_p = 50,80 + 8,61 \cdot 10^{-3} T - 3,31 \cdot 10^5 T^{-2}.$	
Pac	ссчитать истинную молярную теплоемкость FeO при 100 °C.	
Ответ:	1. ~51,63 Дж/(моль·К).	
	2. ~58,83 Дж/(моль·К).	
	3. ~91,63 Дж/(моль⋅К).	
	4. ~58,81 Дж/(моль·К).	
температ	прная теплоемкость воздуха при постоянном давлении в интервале тур 100 и 400 °C составляет 31,36 Дж/(моль·К). Чему равняется его и теплоемкость?	ПК-1
Ответ:	1. 1,54 Дж/(г⋅К).	
	2. 1,45 Дж/(г⋅К).	
	3. 2,03 Дж/(г⋅К).	
	4. 1,08 Дж/(г⋅К).	
7. Каком	у минералу соответствует формула NiFeS ₂ ?	ПК-1
Ответ:	1. Халькопирит.	
	2. Пентландит.	
	3. Халькозин.	

	4. Кубанит.					
0 Ф						TIIC 1
3. Формула хизлевудита?						ПК-1
Ответ:	1. NiFeS ₂ .					
	2. Ni_3S_2 .					
	$3. \text{ FeS}_2.$					
	4. Fe ₇ S ₈ .					
9. металло				реднюю удельн веден в таблице	ую теплоемкость	ПК-1
Ко	мпоненты	Масса, кі				
			Дж/(мол	ъ.К)		
	Cu ₂ S	47,82	76,32	2		
	NiFeS ₂	6,62	86,2			
	Fe ₇ S ₈	14,96	318,	5		
	SiO ₂	26,10	44,43	3		
	Прочие	4,50	-			
Ответ:	1. ~1,54 кДж	√(кг·К).				
1	2. ~0,45 кДх 3. ~2,03 кДх 4. ~1,08 кДх 0. Какой м нии меди из р	к/(кг·К). к/(кг·К). к/(кг·К). еталл нельз аствора, есл	и стандартны	й потенциал мед		ПК-1
1	2. ~0,45 кДх 3. ~2,03 кДх 4. ~1,08 кДх 0. Какой м нии меди из р	к/(кг·К). к/(кг·К). к/(кг·К). еталл нельз				ПК-1
1	2. ~0,45 кДх 3. ~2,03 кДх 4. ~1,08 кДх 0. Какой м нии меди из р	к/(кг·К). к/(кг·К). к/(кг·К). еталл нельз аствора, есл	и стандартны	й потенциал мед	ци +0,34 В?	ПК-1
1 вытеснеі Ме ε°, Е	2. ~0,45 кДх 3. ~2,03 кДх 4. ~1,08 кДх 0. Какой м нии меди из р	к/(кг·К). к/(кг·К). к/(кг·К). еталл нельз аствора, есл	и стандартны	й потенциал мед Н g	ци +0,34 В? I n	ПК-1
1 вытеснеі Ме ε°, Е	2. ~0,45 кДх 3. ~2,03 кДх 4. ~1,08 кДх О. Какой м нии меди из р Z 3 -0,7	к/(кг·К). к/(кг·К). к/(кг·К). еталл нельз аствора, есл	и стандартны	й потенциал мед Н g	ци +0,34 В? I n	ПК-1
вытеснеі Ме	2. ~0,45 кДх 3. ~2,03 кДх 4. ~1,08 кДх 0. Какой м нии меди из р Z 3 -0,7	к/(кг·К). к/(кг·К). к/(кг·К). еталл нельз аствора, есл	и стандартны	й потенциал мед Н g	ци +0,34 В? I n	ПК-1
1 вытеснеі Ме ε°, Е	2. ~0,45 кДх 3. ~2,03 кДх 4. ~1,08 кДх О. Какой м нии меди из р Z 3 -0,7 1. Со. 2. Zn.	к/(кг·К). к/(кг·К). к/(кг·К). еталл нельз аствора, есл	и стандартны	й потенциал мед Н g	ци +0,34 В? I n	ПК-1
1 Βытеснеі Μе ε°, Ε Ответ:	2. ~0,45 кДх 3. ~2,03 кДх 4. ~1,08 кДх 0. Какой м нии меди из р 7 1. Со. 2. Zn. 3. H g.	к/(кг·К). к/(кг·К). еталл нельз аствора, есл	и стандартны С о -0,270	й потенциал мед Н g +0,798	ци +0,34 В? I n	ПК-1
1 Βытеснеі Μе ε°, Ε Ответ:	2. ~0,45 кДх 3. ~2,03 кДх 4. ~1,08 кДх 0. Какой м нии меди из р 7 3 -0,7 1. Со. 2. Zn. 3. Hg. 4. In.	к/(кг·К). к/(кг·К). еталл нельз аствора, есл	и стандартны С о -0,270	й потенциал мед Н g +0,798	ци +0,34 В? I n	

3. Извлечение серы в газовую фазу. 4. Содержание серы в штейне. ПК-1 12. Для чего в медный электролит добавляют серную кислоту? Ответ: 1. Для уменьшения дендритообразования. 2. Для подавления питтингообразования. 3. Для повышения электропроводности электролита. 4. Для снижения содержания примесей в катодном металле. 13. В какой печи производят плавку на штейн на Медном ПК-1 заводе ПАО«ГМК «НН»? Ответ: 1. Отражательной печи. 2. Рудно-термической печи. 3. Печи взвешенной плавки. 4. Печи Ванюкова. ПК-1 14. С повышенем десульфуризации: Ответ: 1. Уменьшается выход шлака. 2. Повышается содержание цветных металлов штейне. 3. Увеличивается масса штейна. 4. Повышается извлечение цветных металлов в штейн. 15. Найти при температуре 25 °C среднюю удельную теплоемкость ПК-1 металлосодержащей шихты, состав которой приведен в таблице Компоненты Масса, кг Дж/(моль·К) 76,32 Cu_2S 47,82 NiFeS₂ 6,62 86,2 14,96 Fe₇S₈ 318.5 SiO₂ 26,10 44,43 4.50 Прочие

Ответ: 1. ~1,54 кДж/(кг⋅К).

6

	2. ~0,45 кДж/(кг⋅К).	
	3. ~2,03 кДж/(кг⋅К).	
	4. ~1,08 кДж/(кг⋅К).	
16. Обла	сть, где не применяется кобальта:	ПК-1
Ответ:	1. Жаропрочные сплавы	
	2. Основной элемент в сплавах	
	3. для изготовления посуды	
	4. легирующий элемент в сплавах	
17. Спла кобальта	вы, имеющие высокое сопротивление термической усталости, содержат	ПК-1
Ответ:	1. До 50 %	
	2. До 60%	
	3. До 70%	
	4. До 80%	
18. В кан	ком соединении никель проявляет сильные окислительные свойства?	ПК-1
Ответ:	1. Ni ₂ O ₃	
	2. NiOH	
	3. NiS	
	4. NiO	
19. B py	дах медь находится в виде:	ПК-1
Ответ:	1. чистом	
гидров	2. сернистых соединениях, оксидах, сарбонатах	
	3. оксидах железа, пирита, кварцита	
MgO,	4.различных соединениях содержащих Al ₂ O ₃ , СаО	
20. Како биржу?	й из металлов поставляется Норильским никелем на Лондонскую	ПК-1
Ответ:	1. Кобальт	
	2. Медь	
	3. Никель	
	4. Железо	
21. Како	й из перечисленных металлов является самым дорогим на рынке?	ПК-1
Ответ:	1. Кобальт	

	2. Медь	
	3. Никель	
	4. Железо	
22. Посл	е огневого рафинирования получают медь частотой:	ПК-1
Ответ:	1. 100%	
	2. 85%	
	3. 70-72%	
	4. 99-99,5%	
23. При 1	какой температуре никель проявляет свойства магнетита?	ПК-1
Ответ:	1. 800	
	2. 500 и выше	
	3. 340 и выше	
	4. 600 и выше	
24. Нике	ль в сульфидных рудах содержится в виде:	ПК-1
Ответ:	1. NiOH	
	2. NiO ₂	
	3. NiS	
	4. NiSO ₄	
25. Како	му минералу соответствует формула NiFeS ₂ ?	ПК-1
Ответ:	1. Халькопирит.	
	2. Пентландит.	
	3. Халькозин.	
	4. Кубанит.	
		1

1.Молярная масса никелевого купороса NiSO ₄ ·7H ₂ O: Ответ: 1. 155 г.	ПК-1
2. 398 г.	
3. 281 г.	
4. 417 г.	
2. Вычислить содержание серы в кубаните CuFe ₂ S ₃ ?	ПК-1
Ответ: 1. 35,29%.	

2. 26,31%.	
3. 30,57%.	
4. 40,21%.	
3. В процессе железоочистки железистых хвостов, образующихся при серосульфидной флотации, протекает реакция $2 FeSO_4 + \frac{1}{2}O_2 + 7H_2O + 2CaCO_3 = 2Fe(OH)_3 + 2CaSO_4 \cdot 2H_2O + 2CO_2 \uparrow.$	ПК-1
Сколько образуется гидроксида железа, если в жидкой фазе 1 м ³ пульпы железистых хвостов содержится 10,8 кг Fe, а остаточное содержание железа в жидкой фазе после железоочистки составляет 2 г/л .	
Ответ: 1. 14,11 кг.	
2. 18,05 кг.	
3. 17,63 кг.	
4. 16,81 кг.	
4. Сколько м ³ кислорода потребуется для окисления 150 кг троилита FeS до вюстита FeO, если процесс протекает при нормальных условиях?	ПК-1
Ответ: 1. 66,1 м ³ .	
$2.50,2 \text{ m}^3.$	
$3.57,3 \text{ m}^3.$	
$4.48,8 \text{ m}^3.$	
5. Истинная молярная теплоемкость воздуха при постоянном давлении выражается уравнением	ПК-1
$C_p = 27,20 + 4,18 \cdot 10^{-3} T.$	
Найти истинную удельную теплоемкость при постоянном давлении при температуре 150 °C.	
Ответ: 1. ~20,63 Дж/(моль·К).	
2. ~48,83 Дж/(моль·К).	
3. ~31,63 Дж/(моль·К).	
4. ~28,99 Дж/(моль·К).	
6. Молярная теплоемкость магнетита Fe ₃ O ₄ при температуре 25 °C. составляет 129,3 Дж/(моль·К). Чему равняется его удельная теплоемкость?	ПК-1
Ответ: 1. 1,54 Дж/(г·К).	
2. 0,65 Дж/(г·К).	
3. 0,83 Дж/(г⋅К).	
4. 1,08 Дж/(г⋅К).	
7. Какому минералу соответствует формула CuFe ₂ S ₃ ?	ПК-1
1	1

Ответ: 1.	Халькопири	Γ.				
2	2. Пентландит.					
3	3. Халькозин.					
4	4. Кубанит.					
8. Форму	ла пиррот	гина?				ПК-1
	NiFeS ₂ .					
2	. Ni ₃ S ₂ .					
3	. FeS ₂ .					
4	. Fe ₇ S ₈ .					
	ержащей ших			еднюю удельну веден в таблице	то теплоемкость	ПК-1
Компонен	нты Масса, кг	С, Дж/(моль·К)				
CuFeS	57,82	86,2				
NiFeS ₂	6,62	86,2				
Fe ₇ S ₈	14,96	318,5				
SiO ₂	16,10	44,43				
Прочи	e 4,50	-				
Ответ: 1.	~0,51 кДж/(к	г·К).	J			
2	. ~0,45 кДж/(1	сг∙К).				
3	. ~1,03 кДж/(г	кг∙К).				
4	. ~0,88 кДж/(1	кг∙К).				
	о оставші	енных мет иеся метал		-	металл, для ачестве металлов-	ПК-1
Me	Zn	С	O	Н д	C u	
ε°, Β	ε°, B -0,763 -0,270 +0,798 + 0,34					
Ответ: 1.Со.						
2. Zn.						
3. H g.						
4.Cu.						
на штей	н в шихте		ось 26	5,72 т серы, а в	при плавке полученных	ПК-1

Ответ: 1. 55 % .	
2. 69 %.	
3. 60 %.	
4. 48 %.	
12. Для чего в медный электролит добавляют тиомочевину?	ПК-1
Ответ: 1. Для уменьшения дендритообразования.	
2. Для подавление питтингообразования.	
3. Для повышения электропроводности электролита.	
4. Для исключения загидрачивания катода.	
13. В какой печи производят плавку на штейн на Надеждинском металлургическом заводе?	ПК-1
Ответ: 1. Отражательной печи.	
2. Рудно-термической печи.	
3. Печи взвешенной плавки.	
4.Печи Ванюкова.	
14. При конвертировании никелевого штейна получают:	ПК-1
14. При конвертировании никелевого штейна получают: Ответ: 1. Файнштейн.	ПК-1
	ПК-1
Ответ: 1. Файнштейн.	ПК-1
Ответ: 1. Файнштейн. 2. Черновую медь.	ПК-1
Ответ: 1. Файнштейн. 2. Черновую медь. 3. Анодную медь.	ПК-1
Ответ: 1. Файнштейн. 2. Черновую медь. 3. Анодную медь. 4. Отвальный шлак.	
Ответ: 1. Файнштейн. 2. Черновую медь. 3. Анодную медь. 4. Отвальный шлак. 15. Пирротиновый концентрат является:	
Ответ: 1. Файнштейн. 2. Черновую медь. 3. Анодную медь. 4. Отвальный шлак. 15. Пирротиновый концентрат является: Ответ: 1. Коллективным концентратом.	
Ответ: 1. Файнштейн. 2. Черновую медь. 3. Анодную медь. 4. Отвальный шлак. 15. Пирротиновый концентрат является: Ответ: 1. Коллективным концентратом. 2. Отвальными хвостами.	
Ответ: 1. Файнштейн. 2. Черновую медь. 3. Анодную медь. 4. Отвальный шлак. 15. Пирротиновый концентрат является: Ответ: 1. Коллективным концентратом. 2. Отвальными хвостами. 3. Промпродуктом.	
Ответ: 1. Файнштейн. 2. Черновую медь. 3. Анодную медь. 4. Отвальный шлак. 15. Пирротиновый концентрат является: Ответ: 1. Коллективным концентратом. 2. Отвальными хвостами. 3. Промпродуктом. 4. Селективным концентратом.	ПК-1
Ответ: 1. Файнштейн. 2. Черновую медь. 3. Анодную медь. 4. Отвальный шлак. 15. Пирротиновый концентрат является: Ответ: 1. Коллективным концентратом. 2. Отвальными хвостами. 3. Промпродуктом. 4. Селективным концентратом.	ПК-1
Ответ: 1. Файнштейн. 2. Черновую медь. 3. Анодную медь. 4. Отвальный шлак. 15. Пирротиновый концентрат является: Ответ: 1. Коллективным концентратом. 2. Отвальными хвостами. 3. Промпродуктом. 4. Селективным концентратом. 16. Какие элементы входят в состав сплава стеллита? Ответ: 1. Кобальт, хром, никель, марганец	ПК-1

17. Чем	обусловлено широкое применение меди в промышленности?	ПК-1
Ответ:	1. высокой плотностью	
O I DUIT	2. высокой электрической проводимостью	
	3. хорошей растворимостью в кислотах	
	4. мягкость	
10 Voro	му минералу соответствует формула CuFe ₂ S ₃ ?	ПК-1
		11K-1
Ответ:	1. Халькопирит.	
	2. Пентландит.	
	3. Халькозин.	
	4. Кубанит.	
19. Ф о р	омула пирротина?	ПК-1
Ответ:	1. NiFeS ₂ .	
	2. Ni_3S_2 .	
	$3. \text{ FeS}_2.$	
	4. Fe_7S_8 .	
_	ометаллургический способ получения меди не нашел своего широкого ния, почему?	ПК-1
Ответ:	1. Финансово затратно	
	2. малая эффективность	
драго	3. невозможно извлекать попутно с медью ценные металлы	
взаим	4. в ходе извлечения возникают реакции одействующие с чистой медью	
	кько процентов от всемирного производства кобальта производит кий никель?	ПК-1
Ответ:	1. 1%	
	2. 20%	
	3. 10%	
	4. 5%	
22. Как	ой из приведенных сульфидов не является высшим?	ПК-1
Ответ:	$1. \operatorname{Fe}_{7} S_{8}.$	
	2. CuS.	
	3. C u ₂ S .	
		1

23. После огнево	ого рафин	нирования полу	учают медь частотой:	ПК-1
Ответ: 1. 1009	%			
2. 85%	6			
3. 70-	72%			
4. 99-	99,5%			
24. Найти пр	и темпо	ературе 25	°C среднюю удельную теплоемкость	ПК-1
металлосодержа			ррой приведен в таблице	
Компоненты	Macca,	C,		
	КГ	Дж/(моль·К)		
CuFeS ₂	57,82	86,2		
NiFeS ₂	6,62	86,2		
Fe ₇ S ₈	14,96	318,5		
SiO ₂	16,10	44,43		
Прочие	4,50	-		
Ответ: 1. ~0,5	<u>।</u> 1 кДж/(кі	г·К).		
2. ~0,	45 кДж/(н	сг∙К).		
3. ~1,	03 кДж/(в	сг∙К).		
4. ~0.	88 кДж/(н	α·K).		
25. Обогащение			иетолом:	ПК-1
	ратаци		етодом.	11111
	-			
-	готации			
	ляризс			
4. э	лектр	олитическ	им рафинированием	

1.Молярная масса фаялита (FeO) ₂ ·SiO ₂ : Ответ: 1. 179 г/моль.	ПК-1		
2. 148 г/моль.			
3. 1976 г/моль.			
4. 2012 г/моль.			
2. Вычислить содержание воды в медном купоросе CuSO ₄ ·5H ₂ O?	ПК-1		
Ответ: 1. 35,1%.			
2. 26,0%.			

3. 32,5%.	
4. 36,0%.	
3. В процессе железоочистки железистых хвостов, образующихся при серосульфидной флотации, протекает реакция 2FeSO ₄₊ ½O ₂ +7H ₂ O+2CaCO ₃ =2Fe(OH) ₃ +2CaSO ₄ ·2H ₂ O+2CO ₂ ↑. Сколько образуется гипса, если по реакции расходуется 23,88 кг FeSO ₄ .	ПК-1
Ответ: 1. 14,11 кг.	
2. 18,05 кг.	
3. 27,03 кг.	
4. 16,81 кг.	
4. При осаждении цветных металлов металлизированными железорудными окатышами (МЖО) часть их тратится непроизводительно за счет протекания реакции	ПК-1
$Fe+H_2SO_4 \rightarrow FeSO_4 + H_2 \uparrow$ Сколько выделится m^3 водорода, если при протекании реакции нейтрализуется 3,09 кг кислоты жидкой фазы пульпы?	
Ответ: 1. 1,121 м ³ .	
2. 0,706 м ³ .	
$3. 0,279 \text{ m}^3.$	
4. 2,03 м ³ .	
5. Истинная молярная теплоемкость оксида меди (I) Cu ₂ O в интервале 298-1500 К выражается уравнением	ПК-1
$C_p = 56,57 + 29,29 \cdot 10^{-3} T$	
Рассчитать истинную молярную теплоемкость Cu ₂ O при 127 °C.	
Ответ: 1. ~20,63 Дж/(моль·К).	
2. ~68,29 Дж/(моль·К).	
3. ~31,63 Дж/(моль⋅К).	
4. ~28,99 Дж/(моль·К).	
6. Молярная теплоемкость SiO ₂ при температуре 25 °C составляет 44,43 Дж/(моль·К). Чему равняется его удельная теплоемкость?	ПК-1
Ответ: 1. 0,74 Дж/(г·К).	
2. 0,65 Дж/(г·К).	
2. 0,03 Дж/(ГК).	
2. 0,03 Дж/(Г·К). 3. 0,83 Дж/(г·К).	

Ответ:	1. Хал	ькопирит.					
	2. Пег	нтландит.					
	3. Xaj	лькозин.					
	4. Ky6	банит.					
8. Форму	ула	фаялита	a ?				ПК-1
Ответ:	1. NiF	SeS_{2} .					
	2. Ni ₃	S_2 .					
	3. (Fe	O) ₂ ·SiO ₂ .					
	4. Fe ₇	S_8 .					
9. Найт металлосо,		ри темпе	ратуре 25 °сы, состав котор	1	•	ю теплоемкость	ПК-1
Компоне	енты	Масса, кг	С, Дж/(моль·К)				
CuFes	S_2	37,82	86,2				
Fe ₇ S	8	44,96	318,5				
Fe ₃ O	4	6,62	150,79				
SiO	2	5,10	44,43				
Прочі	ие	5,50	-				
Ответ: 1	. ~0,6	2 кДж/(кг	К).	Ţ			
	2. ~0,	75 кДж/(кі	·K).				
	3. ~0,	51 кДж/(кі	·K).				
	4. ~0,	88 кДж/(кі	·K).				
10. вытесне		Выбрать из раство	металл- ра оставшихся			одный для	ПК-1
Me		Zn	Со		Ni	C u	
ε°, Β		-0,763	-0,27	70	-0,23	+ 0,34	
Ответ: 1	. C .						
	2. Zn.						
3. Ni.							
	4.C	u.					
десуль ф содержа	þури ание	гация ем 8,35 т	составила	70%	_		ПК-1
Ответ: 1.	υ, ∠ 3 Τ	•					

2.045 -	
2. 0,45 т.	
3. 0,32 т.	
4. 0,41 т.	
12.Для чего в медный электролит добавляют ПАВ волгонат?	ПК-1
Ответ: 1. Для уменьшения дендритообразования.	
2. Для уменьшения испарения электролита.	
3. Для повышения электропроводности электролита.	
4. Для исключения загидрачивания катода.	
13. В состав медного электролита не входит?	ПК-1
Ответ: 1. Серная кислота.	
2. Сульфат меди.	
3. Сульфонат.	
4.Хлорид натрия.	
14. Формула хизлевудита?	ПК-1
Ответ: 1. NiFeS ₂ .	
2. Ni ₃ S ₂ .	
3. (FeO) ₂ ·SiO ₂ .	
4. Fe ₇ S ₈ .	
15. Сколько процентов от всемирного производства никеля производит Норильский никель?	ПК-1
Ответ: 1. 12%	
2. 6%	
3. 50%	
4. 19%	
16. Какое место занимает Россия в мировом производстве никеля? Ответ: 1. первое	ПК-1
2. второе	
3. третье	
4. четвертое	
17. Для чего в медный электролит добавляют ПАВ волгонат?	ПК-1

Ответ:				
1. Для умень	шения ;	дендритооб	разования.	
2. Для уменьше	ния испаре	ения электролит	га.	
3. Для повы	шения	электропро	водности электролита.	
4. Для искл	ночени:	я загидрачі	ивания катода.	
18. В состав	медно	го электрол	пита не входит?	ПК-1
Ответ: 1. Сер	рная кис	слота.		
2. Cy:	льфат меді	И.		
3. C y	льфона	ι Τ .		
	порид н			1110 1
1		ратуре 25 °C гы, состав котор	С среднюю удельную теплоемкость ой приведен в таблице	ПК-1
Компоненты	Macca,	C,		l
	ΚΓ	Дж/(моль·К)		
CuFeS ₂	37,82	86,2		
Fe ₇ S ₈	44,96	318,5		
Fe ₃ O ₄	6,62	150,79		
SiO ₂	5,10	44,43		
Прочие	5,50	-		
Ответ: 1. ~0,6	52 кДж/(кг	·K).		
2. ~0,	75 кДж/(кі	г·К).		
3. ~0,	51 кДж/(кг	г∙К).		
4. ~0,	88 кДж/(к	г∙К).		
20. Какой из	привед	(енных сул	ьфидов не является низшим?	ПК-1
Ответ: 1. С о				
2. Cu	ıS.			
3. C ı	12S.			
	i ₃ S ₂ .		кобальта используют:	ПК-1
	-		кооальта используют.	11K-1
	ковую дро	•		
	лковую др			
	лтовочный	-	,	
			і сепаратор	
22. Формула сте	ората коб	альта:		ПК-1

Ответ:	1. Co(C ₁₇ H ₃₅ CoO) ₂	
	2. CoS	
	3. Co ₂ (CO) ₈	
	4. CoAsS	
23. Соде	ржание никеля в рудах:	ПК-1
Ответ:	1. от 5 до 10%	
	2. от 3 до 5%	
	3. от 0,3 до 0,5%	
	4.от 0,5 до 1,0%	
24. Форм	ула оксида кобальта (III):	ПК-1
Ответ:	1. CoO	
	$2. \operatorname{Co}_2\operatorname{O}_3$	
	$3. \text{ Co}_2\text{S}_3$	
	4. Co ₂ (CO) ₈	
25. Форм	ула тенаровой сини:	ПК-1
Ответ:	1. CoO*ZnO	
	2. CoAsS	
	$3. \text{ Co}_2\text{S}_3$	
	4. (CoAl ₂)O ₄	

1. Молярная масса пентландита (Fe,Ni) ₉ S ₈ :	ПК-1					
Ответ: 1. 779 г/моль.						
2. 843 г/моль.						
3. 976 г/моль.						
4. 1291 г/моль.						
2. Вычислить содержание никеля в моихуките Си ₉ (Fe,Ni) ₉ S ₁₆ ?	ПК-1					
Ответ: 1. 35,90%.						
2. 25,01%.						
3. 28,15%.						
4. 36,02%.						
3. В процессе железоочистки железистых хвостов, образующихся при серосульфидной флотации, протекает реакция	ПК-1					

$2FeSO_{4+}\frac{1}{2}O_{2}+7H_{2}O+2CaCO_{3}=2Fe(OH)_{3}+2CaSO_{4}\cdot 2H_{2}O+2CO_{2}\uparrow.$	
Сколько потребуется известняка, если по реакции расходуется 23,88 кг	
FeSO ₄ .	
Ответ: 1. 10,11 кг.	
2. 11,05 кг.	
3. 15,71 кг.	
4. 18,81 кг.	
4. При автоклавном выщелачивании пирротинового концентрата окисление халькопирита происходит по реакции:	ПК-1
$5CuFeS_2 + 9,5O_2 + 7H_2SO_4 = 5CuSO_4 + 5FeSO_4 + 7S^o + 7H_2O.$	
Сколько необходимо затратить м ³ кислорода для окисления 0,8 кг халькопирита?	
Ответ: 1. 1,122 м ³ .	
2. 0,706 м ³ .	
$3.0,185 \text{ m}^3.$	
$4. 1,032 \text{ m}^3.$	
5. Истинная молярная теплоемкость для O ₂ в интервале 298-3000 К	ПК-1
выражается уравнением	
$C_p = 31,46 + 3,39 \cdot 10^{-3} T - 3,77 \cdot 10^5 T^{-2},$	
Рассчитать истинную молярную теплоемкость кислорода при 1227 °C.	
Ответ: 1. ~29,63 Дж/(моль·К).	
2. ~68,29 Дж/(моль∙К).	
3. ~36,40 Дж/(моль⋅К).	
4. 2~8,99 Дж/(моль·K).	
6. Молярная теплоемкость сульфида железа (II) FeS при температуре 25 °C составляет 50,54 Дж/(моль·К). Чему равняется его удельная теплоемкость?	ПК-1
Ответ: 1. 0,74 Дж/(г·К).	
2. 0,65 Дж/(г⋅К).	
3. 0,83 Дж/(г·К).	
4. 0,57Дж/(г⋅К).	
7. Какому минералу соответствует формула Cu ₂ S?	ПК-1
Ответ: 1. Халькопирит.	
2. Пентландит.	
	1

	3.	Xa	лькозин.				
	4.	Ку	банит.				
8. 0	Рорму л	ıa	магнетит	a ?			ПК-1
От	вет: 1.	Fe ₃	O ₄ .				
	2.	Ni ₃	S_2 .				
	3.	(Fe	$O)_2 \cdot SiO_2$.				
	4.	Fe ₇	S_8 .				
9. мет	Найти галлосоде	-	ри температ ащей шихты,	туре 25 °C сре состав которой при	еднюю удельну веден в таблице	ю теплоемкость	ПК-1
k	Сомпонен	ты	Масса, кг	С, Дж/(моль·К)			
	CuFeS ₂		27,82	86,2			
	Fe ₇ S ₈		44,92	318,5			
	Fe ₃ O ₄		16,62	150,79			
	SiO ₂		4,14	44,43			
	Прочие		6,50	-			
От	вет: 1.	~0,6	1 2 кДж/(кг·К).				
	2.	~0,	75 кДж/(кг∙К)).			
	3.	~0,	53 кДж/(кг∙К)).			
	4.	~0,	58 кДж/(кг·К)).			
		0		ых металлон я металлы п			ПК-1
	Me		Zn	Cd	Ni	Fe	
	ε°, B		-0,763	-0,402	-0,23	- 0,44	
От	вет: 1.	$\mathbb{C} d$	•				
	2.	Νi					
	3.	Zn.					
	4.	Fe					
де сер фа	сульфу ы? При	ури ра ут (зация со асчетах сч ствует.	штейн шихты ставила 75%. читаем, что т	Сколько образ	овалось диоксида	ПК-1

2. 750,4 т.				
3. 63,2 т.				
4. 72,0 т.				
12.Для чего в медный электролит добавляют хлорид натрия?	ПК-1			
Ответ: 1. Для снижения потерь серебра.				
2. Для уменьшения испарения электролита.				
3. Для повышения электропроводности электролита.				
4. Для исключения загидрачивания катода.				
13. Сродство к кислороду возрастает слева направо в следующем ряду сульфидов:	ПК-1			
OTBET: 1. $C u_2 S \rightarrow N i_3 S_2 \rightarrow C \circ S \rightarrow F e S$.				
2. $F e S \rightarrow C u_2 S \rightarrow N i_3 S_2 \rightarrow C o S$.				
3. $C u_2 S \rightarrow C \circ S \rightarrow N i_3 S_2 \rightarrow F e S$.				
$4 \cdot C u_2 S \rightarrow F e S \rightarrow C \circ S \rightarrow N i_3 S_2$.				
14. Какому минералу соответствует формула Cu ₂ S?	ПК-1			
Ответ: 1. Халькопирит.				
2. Пентландит.				
3. Халькозин.				
4. Кубанит.				
15. Сколько процентов от всемирного производства меди производит Норильский никель?	ПК-1			
Ответ: 1.2%				
2. 6%				
3. 10%				
4. 15%	ПК-1			
16. Сколько процентов на отечественном рынке приходится на долю Норильского никеля по кобальту?				
Ответ: 1.75%				
2. 85%				
3. 95%				
4. 99%				

17. Содержание кобальта в рудах: Ответ: 1. От 1% до 10%	ПК-1			
2. От 0,1% до 1%				
3. От 0,01% до 0,1%				
4 . От 0,001% до 0,01%				
18. Какова цель стадии подкисления в операции восстановления-растворения железокобальтовой пульпы?	ПК-1			
Ответ: 1. Восстановление Со (III) до Со (II)				
2. Перевод Co (II) в Co (III)				
3. Растворение Fe(OH) ₂				
4. Растворение Fe(OH) ₃				
19. Рассчитать физическую теплоту шихты при 27 °C, если масса шихты 1,7 т, а удельная теплоемкость 0,69 кДж/(кг·К).	ПК-1			
Ответ: 1. ~32 МДж.				
2. ~27 МДж.				
3. ~48 МДж.				
4. ~16 МДж.				
20. Формула ринмановой зелени:				
Ответ: 1. CoAsS				
2. CoO*ZnO				
$3. \mathrm{CoAs}_2$				
4.Co(C ₁₇ H ₃₅ CoO) ₂				
21. Формула ауреалина:	ПК-1			
Ответ: 1. CoO*ZnO				
2. CoAsS				
3. $K_3[Co(NO_2)_6]$				
4.CoAs ₂				
22. Содержание кобальта в высококачественных кобальтовых рудах:	ПК-1			
Ответ: 1. Более 20-25%				
2. Более 15-20%				
3. Более 10-15%				
4.Более 5-10%				
23. Какова цель стадии восстановления-растворения железокобальтовой пульпы?				

Ответ:	1. Растворение в сернокислых растворах соединений кобальта, никеля,		
железа и карбоната никеля			
2. Осаждение кобальта			
3. Утилизация вредных примесей			
	4. Насыщение пульпы кобальтом		
24. Какое вещество применяют для стадии восстановления в качестве восстановителя?			
Ответ:	1. Na(OH) ₂		
	2. NaCO ₃		
	3. NaCl		
	4. NaHSO ₃		
25. Скол	ько стадий нейтрализации включает в себя производство кобальта?	ПК-1	
Ответ:	1. 1		
	2. 2		
	3. 3		
	4.4		

1. Молярная масса железистого халькопирита $Cu_{0,9}Fe_{1,14}Ni_{0,01}S_2$		
Ответ: 1. 186 г/моль.	ļ 1	
2. 548 г/моль.	<u> </u>	
3. 276 г/моль.	<u> </u>	
4. 143 г/моль.		
2. Вычислить содержание железа в пентландите (Fe,Ni) ₉ S ₈ ?	ПК-1	
Ответ: 1. 35,98%.	ļ 1	
2. 29,01%.	ļ 1	
3. 48,15%.	ļ 1	
4. 39,04%.	ļ	
3. В процессе железоочистки железистых хвостов, образующихся при серосульфидной флотации, протекает реакция $ 2 FeSO_{4+}{}^{1}\!\!/_{2}O_{2} + 7H_{2}O + 2CaCO_{3} = 2Fe(OH)_{3} + 2CaSO_{4} \cdot 2H_{2}O + 2CO_{2}\uparrow. $ Сколько образуется углекислого газа, если по реакции расходуется 23,88 кг FeSO ₄ . Ответ: 1. 2,11 м ³ .	ПК-1	

	$2.3,51 \text{ m}^3.$	
	$3.4,92 \text{ M}^3.$	
	$4.3,80 \text{ m}^3.$	
окисленно	е автоклавно-окислительного выщелачивания цветные металлы из ой пульпы осаждают железорудными окатышами. Осаждение никеля по реакции	ПК-1
NiS	$O_4+ Fe+ S \rightarrow NiS+ FeSO_4$	
для осаж;	лько потребуется металлизированных железорудных окатышей (МЖО) дения из жидкой фазы пульпы 28,12 кг сульфата никеля, если в МЖО ся 65 % железа?	
Ответ:	1. 14,81 кг.	
	2. 17,05 кг.	
	3. 15,63 кг.	
	4. 16,31 кг.	
	ная молярная теплоемкость для диоксида серы SO ₂ в интервале 298-2000 нется уравнением	ПК-1
C_p	$=46,19+7,87\cdot10^{-3}T-7,70\cdot10^{5}T^{-2},$	
Pa	ссчитать истинную молярную теплоемкость кислорода при 1127 °C.	
Ответ:	1. ~59,93 Дж/(моль·К).	
	2. ~68,29 Дж/(моль·К).	
	3. ~56,81 Дж/(моль⋅К).	
	4. ~48,99 Дж/(моль·K).	
_	ная теплоемкость гематита Fe ₂ O ₃ при температуре 25 °C составляет 50,54 ·K). Чему равняется его удельная теплоемкость?	ПК-1
Ответ:	1. 0,74 Дж/(г⋅К).	
	2. 0,65 Дж/(г⋅К).	
	3. 0,83 Дж/(г⋅К).	
	4. 0,57Дж/(г⋅К).	
7. Какому	иминералу соответствует формула CuS?	ПК-1
Ответ:	1. Ковеллин.	
	2. Пентландит.	
	3. Халькозин.	
	4. Кубанит.	

8. Формул	а кремнезёма?				ПК-1
Ответ: 1. Fe ₃ O ₄ .					
2. 1	Ni_3S_2 .				
3. (FeO) ₂ ·SiO ₂ .				
4. \$	SiO ₂ .				
	1 1	25 °C среднюю	•	теплоемкость	ПК-1
металлосодер	жащей шихты, состав	в которои приведен	в таблице		
Компонент	ы Масса, кг	С, Дж/(моль·К)			
CuFeS ₂	17,82	86,2			
NiFeS ₂	6,62	86,2			
Fe ₇ S ₈	57,96	318,5			
SiO ₂	13,10	44,43			
Прочие	4,50	-			
Ответ: 1. ~	0,52 кДж/(кг·К).	.1	_		
2. ~	-0,45 кДж/(кг∙К).				
3. ~	-1,23 кДж/(кг∙К).				
4. ~	-0,78 кДж/(кг∙К).				
10. Выбра	ать металл-цемен	татор, пригод	ный для в	ытеснения	ПК-1
из раствора о	ставшихся металлов:				
Me	Со	C d	Ni	Fe	
ε°, Β	-0,270	-0,402	-0,23	- 0,44	
Ответ: 1. С	d.		<u> </u>		
2. 2	Zn.				
3. I	Fe.				
4.1	Ni.				
11. При г	ілавке на штей	н шихты, со	держащей	i 33,5 т серы,	ПК-1
	ризация состав		лько образова	лось триоксида	
	ошение S _{SO2} : S _S	303-9.1.			
Ответ: 1. ~5,					
2. ~7					
3. ~8					
4. ~6					
12. Катоф	арез приводит	к:			ПК-1

2. Уменьшению испарения электролита.			
3. Повышению электропроводности электролита.			
4. Повышению потерь драгметаллов.			
• •	ПК-1		
размер металлургического агрегата:			
Ответ: 1. Высоту печи.			
2. Площадь пода печи.			
3. Площадь свода печи.			
4.Длину печи.			
14. Карбонил кобальта имеет формулу:	ПК-1		
Otbet: 1. CoS			
2. Co ₂ (CO) ₈			
$3. \mathrm{CoAs}_2$			
4. C o A s S			
15. Сколько процентов на отечественном рынке приходится на долю Норильского никеля по меди?	ПК-1		
Ответ: 1. 25%			
2. 35%			
3. 45%			
4. 55%			
16. Сколько процентов на отечественном рынке приходится на долю Норильского никеля по никелю?	ПК-1		
0 1.760/			
Ответ: 1.56%			
OTBET: 1. 56% 2. 86%			
2. 86%			
2. 86% 3. 96% 4. 99%	ПК-1		
2. 86% 3. 96% 4. 99%	ПК-1		
2. 86% 3. 96% 4. 99% 17. Формула кобальтина имеет вид:	ПК-1		
2. 86% 3. 96% 4. 99% 17. Формула кобальтина имеет вид: Ответ: 1. CoAsS	ПК-1		

18. Содер:	жание	кобальта в обычных	х кобальтовых кон	щентратах:	ПК-1
Ответ: 1. 0,1-1%					
	2. 1-3	3%			
	3. 2-5	5%			
	4.5-	- 8 %			
19. Найт	-	ои температуре 2 ищей шихты, состав	25 °C среднюю которой приведен в		ПК-1
Компон	ненты	Масса, кг	С, Дж/(моль:К)		
CuFe	\mathbf{S}_2	17,82	86,2		
NiFe	\mathbf{S}_2	6,62	86,2		
Fe ₇ S	S ₈	57,96	318,5		
SiO)2	13,10	44,43		
Проч	ие	4,50	-		
Ответ:	1. ~0,5	2 кДж/(кг∙К).			
	2. ~0,4	45 кДж/(кг·K).			
3. ~1,23 кДж/(кг⋅К).					
	4. ~0,7	78 кДж/(кг∙К).			
20. Смаль	тин им	иеет формулу:			ПК-1
Otbet: 1. CoS					
$2. \cos_2$					
3. CoAsS					
4. C o A s ₂					
21. С какой целью проводится перекристаллизация гидроксида железа в основной сульфат?			ПК-1		
Ответ: 1. Для получения разбавленной пульпы					
2. Для ускорения фильтрации					
3. Для замедления фильтрации					
	4.Д.	ля повышения	плотности і	гульпы	
22. Кобал	ьтоник	селевый колчедан им	меет формулу:		ПК-1
Ответ:	1. (Co,	, Ni) ₃ S ₂			
2. (Co, Ni)S ₃					
3. (Co, Ni) ₃ S ₄					
4.(Co, Ni)S ₄					

23. Како нейтралі	е вещество используют в качестве осадителя меди на четвертой стадии изации?	ПК-1
Ответ:	1. Синильную кислоту	
	2. Натриевый щелок	
	3. Серный щелок	
	4. Царскую водку	
24. Сафо	рлорит имеет формулу:	ПК-1
Ответ:	1. (CoFe)As ₂	
	2. (CoNi)As ₂	
	$3. \mathrm{CoAs}_2$	
	4 . C o A s S	
25. На ч	ем основана операция тонкой железоочистки?	ПК-1
Ответ:	1. Осаждение железа в виде сульфида	
	2. осаждение чистого железа	
	3. осаждение двух валентного железа кислородом воздуха	
кисло	4.осаждение трех валентного железа родом воздуха	