Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Игнатенко Виталий Иванович

Должность: Проректор по образовательной деятельности и молодежной политике

Дата подписания: 23.06.2025 18:44:31

Уникальный программный ключ: Министерство науки и выс шего образования РФ а49ае343аf5448d45d7e3e1e49659da8109ba78 образовательное образовательное

учреждение

высшего образования

«Заполярный государственный университет им. Н. М. Федоровского» ЗГУ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

«Основы теплогазоснабжения и вентиляции»

Факультет: <u>ГТФ</u>		
Направление подготовки: 08.03.01 Строит	ельство	
Направленность (профиль): «Промышлен	ное и гражданское стр	оительство»
Уровень образования: <u>бакалавриат</u> Кафедра « <u>СиТ</u> » наименование кафедры		
Разработчик ФОС:		
к.т.н., доцент.		Губина Н.А.
(должность, степень, ученое звание)	(подпись)	(ФИО)
Оценочные материалы по дисциплине	рассмотрены и од	обрены на заседании
кафедры, протокол № от «	» 202	Γ.
Заведующий кафедрой к.т.н., профес	сор <i>Елесин М.А</i> .	

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения	Планируемые результаты
компетенции		обучения по дисциплине
	Общеобразовательные	
ОПК-6. Способен	ОПК-6.2. Выбирает типовые	Знает состав и
участвовать в	проектные решения и	последовательность
проектировании	технологическое оборудование	выполнения работ по
объектов	основных инженерных систем	проектированию
строительства и	жизнеобеспечения здания в	инженерных систем
жилищно-	соответствии с техническими	теплогазоснабжения и
коммунального	условиями.	вентиляции; исходные
хозяйства, в		данные для проектирования
подготовке		Умеет выбирать исходные
расчетного и		данные для проектирования
технико-		систем теплогазоснабжения
экономического		и вентиляции; состав и
обоснований их		последовательность
проектов,		выполнения работ по
участвовать в		проектированию систем
подготовке		теплогазоснабжения и
проектной		вентиляции в соответствии с
документации, в том		техническим заданием
числе с		Владеет навыками выбирать
использованием		исходные данные для
средств		проектирования систем
автоматизированного		теплогазоснабжения и
проектирования и		вентиляции; состав и
вычислительных		последовательность
программных		выполнения работ по
комплексов		проектированию систем
		теплогазоснабжения и
		вентиляции в соответствии с
		техническим заданием

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
Основы технической термодинамики и теплопередачи	ОПК-6.2	Список литературных источников по тематике, тестовые задания	Составление систематизированного списка использованных источников, решение теста

Параметры и уравнения состояния газа. Газовые смеси. Определение парциальных давлений. Теплоемкость	ОПК-6.2	Список литературных источников по тематике, тестовые задания	Составление систематизированного списка использованных источников, решение теста
Основы технической термодинамики и теплопередачи	ОПК-6.2	Список литературных источников по тематике, тестовые задания	Составление систематизированного списка использованных источников, решение теста
Микроклимат помещения. Зимний тепловлажностный и воздушный режимы помещений. Зимний тепловлажностный и воздушный режимы помещений. Тепловой баланс помещений. Теплозатраты на отопление зданий. Летний тепловой режим помещений.	ОПК-6.2	Список литературных источников по тематике, тестовые задания	Составление систематизированного списка использованных источников, решение теста
Расчетные наружные климатические условия для проектирования систем обеспечения микроклимата	ОПК-6.2	Список литературных источников по тематике, тестовые задания	Составление систематизированного списка использованных источников, решение теста
Тепловлажностный и воздушный режимы зданий, методы и средства их обеспечения	ОПК-6.2	Список литературных источников по тематике, тестовые задания	Составление систематизированного списка использованных источников, решение теста
Зачет (очная, заочная форма обучения)	ОПК-6.2	Решение всех тестовых заданий по темам и КП	Решение всех тестовых заданий по темам

3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

Наименование оценочного средства	Сроки выполнения	Шкала оценивания	Критерии оценивания
Промежуточна	я аттестация в	форме «Зачет»	
Тестовые задания	В течении обучения по дисциплине	от 0 до 5 баллов	Зачет/Незачет
ИТОГО:	-	баллов	-

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности характеризующие процесс формирования компетенций в ходе освоения образовательной программы

Задания для текущего контроля успеваемости

Для очной, заочной формы обучения Задания для текущего контроля и сдачи зачета с оценкой по дисциплине

ОЦЕНОЧНОЕ СРЕДСТВО	Контролируемая
(тестирование)	компетенция
Вариант 1	
1. Какие вопросы изучает курс «Теплогазоснабжение и	
вентиляция?:	
а) Теплопередача, влажностный режим, воздухопроницание	ОПК-6.2
б) Теплопередача, строительная светотехника и изоляция	
в) Теплопередача, акустика	
г) Теплопередача, влажностный режим, воздухопроницание,	
светотехника и акустика	
2. Основные составляющие теплообмена в помещении?:	
а) Конвективный, лучистый, и струйный теплообмен	ОПК-6.2
и) конвективный, лучистый, и струйный теплооомен	
б) Ветровой, гравитационный и влажностный теплообмен	
в) Конвективный, поверхностный и испарительный теплообмен	
г) Температурный, ветровой и конденсационный теплообмен	

3. В каких средах может иметь место конвективный теплообмен?	01111
В жидких, газообразных	ОПК-6.2
Только в жидких	
Только в газообразных	
В жидких, газообразных и твердых	
4. Какие существуют виды конвекции?	
Естественная и вынужденная	
Только естественная	ОПК-6.2
Только вынужденная	
Механическая, естественная и гравитационная	
5. В каких средах может иметь место лучистый теплообмен?	
В газообразной, в пустоте	ОПК-6.2
В жидкой и газообразной	OHK-0.2
В жидкой, твердой и газообразной	
Только в газообразной	
6. Что представляет собой лучистый теплообмен?	
Перенос энергии в виде электромагнитных волн между двумя	ОПК-6.2
взаимно излучающими поверхностями	OHK-0.2
Перенос тепла движущимися частицами жидкости или газа между	
поверхностями	
Перенос тепла лучом диффузии электронов	
Перенос тепла лучом, последовательной передачи кинетической	
энергии молекулы тела при их соприкосновении	
7. Что представляет собой конвективный теплообмен?	
Перенос тепла между движущими частицами жидкости и газа	ОПК-6.2
Перенос тепла упругими волнами и путем диффузии электронов	O11K-0.2
Перенос тепла кинетической энергией молекул тела	
Перенос тепла электромагнитным излучением от одной среды к другой	
8. В каких средах может иметь место теплопроводность в	
чистом виде:	ОПК-6.2
Только в сплошной твердой	011K-0.2
В твердой, жидкой и газообразной	
Только в жидкой и твердой	
Только в жидкой	

	T.
9. Что представляет собой теплопроводность?	
Молекулярное явление, состоящее в последовательной передаче	ОПК-6.2
кинетической энергии молекул тела при их соприкосновении	O11K-0,2
Перенос тепла движущимися частицами тела с разной плотностью	
среды	
Тепловое излучение между частицами тела с разной температурой	
Перемещение тепла, при котором движение частиц тела	
вызывается внешними механическими воздействиями	
10. Основные факторы, обуславливающие комфортность	
человека в помещении:	
Температура, относительная влажность и подвижность воздуха, а	ОПК-6.2
также температура внутренней поверхности ограждений	
Температура и относительная влажность внутреннего воздуха	
Абсолютная влажность воздуха и температура внутренней	
поверхности наружных стен и окон	
Радиационная температура помещения	
11. Определение стационарного процесса теплопередачи в	
ограждении:	07770
Постоянство во времени по направлению величине теплового	ОПК-6.2
потока и температуры в ограждениях	
Постоянство парциональных давлений водяного пара по обе	
стороны наружного ограждения	
Постоянство гравитационного и ветрового давления на наружное	
ограждение	
Постоянство кондуктивной составляющей теплового потока	
12. При подземной прокладке трубопроводов и непроходных	
каналах применяются только:	ОПК-6,2
Подвесные опоры	O11K-0.2
Катковые опоры	
Неподвижные опоры	
Скользящие опоры на бетонных подушках	
13. Расстояние на участках между неподвижными опорами	
определяется в зависимости от:	ОПК-6.2
Скорости теплоносителя	O11N-0.2
Диаметра трубопроводов	
Рельефа местности	
От состава грунтов	
14. Надземная прокладка трубопроводов не допускается:	
На территории промышленных предприятий	ОПК-6.2

На территории детских дошкольных, школьных и лечебно-	
профилактических учреждениях	
На территории, не подлежащей застройке	
Вне населенных пунктов	
15. Индивидуальный тепловой пункт – это	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	ОПК-6.2
установок двух зданий или более	
Присоединения только систем отопления и горячего водоснабжения	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения на отдельную квартиру	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	
установок одного здания или его части	
16. Центральный тепловой пункт – это	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	ОПК-6.2
•	
установок двух зданий или более.	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	
установок одного здания или его части;	
установок одного здания или сто тасти,	
Присоединения только систем отопления и горячего	
водоснабжения.	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения на отдельную квартиру	
17. Максимальная температуре воды в подающем трубопроводе	
тепловых сетей до ЦТП принимается:	
100 °C	ОПК-6.2
130 °C	
Не выше 150 °C	
70 °C, а в ЦТП догревается	
19. Эонопиод апметипа метанап жила стад	
18. Запорная арматура устанавливается	
На всех подающих и обратных трубопроводах тепловых сетей на входе в тепловой пункт	ОПК-6.2
На всех подающих и обратных трубопроводах тепловых сетей на	
выходе из тепловых пунктов	
На всех подающих и обратных трубопроводах тепловых сетей	
ты всел подмещил и сорытных грусопроводил тепловых сетей	

19. Тепловые сети могут быть Разветвленными и конечными Кольцевыми и тупиковыми Резервированными и нерезервированными Прямыми и обратными 20. Если протяженность магистрали более 1000 м, задвижки устанавливают: Через каждые 500 м Через каждые 500 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, строительная светотехника и изоляция Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурпая акустика Теплопередача, каждые 1000 м 22. Основные составляющие теплообмена в номещение? Конвективный, доверхностный и испарительный теплообмен Конвективный, доверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен Температурный теплообмен Темпоотовый теплообмен Темпоотовый теплообмен Темпоотовый теплооб		
Разветвленными и конечными Кольцевыми и тупиковыми Резервированными Прямыми и обратными 20. Если протяженность магистрали более 1000 м, задвижки устанавливают: Через каждые 500 м Через каждые 500 м Через каждые 100 м 21. Какие явления и вопросы изучает дисциплина «Теплогароспабжение и вентиляция»? Теплопередача, пажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурпая акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, пучистый, и струйный теплообмен Сонвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен Температурный, ветровой и конденсационный теплообмен ОПК-6.2 ОПК-6.2 ОПК-6.2 ОПК-6.2 ОПК-6.2 ОПК-6.2 ОПК-6.2 Время в часах, в течение которого отраждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одном градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одном градусу, отдет одну единицу тепла	На любых трубопроводах	
Разветвленными и конечными Кольцевыми и тупиковыми Резервированными и нерезервированными Прямыми и обратными 20. Если протяженность магистрали более 1000 м, задвижки устанавливают: Через каждые 500 м Через каждые 500 м Через каждые 100 м Через каждые 800 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогарокабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен Температурный, ветровой и конденсационный теплообмен Сонветивный, поверхностно ограждения при разности температур воздуха с обеих сторон ограждения при разности температур воздуха с обеих сторон ограждения при разности температур воздуха с обеих сторон ограждения при разности температур поверхности ограждения при разности отраждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур		
Прямыми и тупиковыми Резервированными и нерезервированными Прямыми и обратными 20. Если протяженность магистрали более 1000 м, задвижки устанавливают: Через каждые 500 м Через каждые 500 м Через каждые 800 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, строительная и архитектурная акустика Теплопередача, праждения и воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одноог градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	19. Тепловые сети могут быть	
Резервированными и нерезервированными Прямыми и обратными 20. Если протяженность магистрали более 1000 м, задвижки устанавливают: Через каждые 500 м Через каждые 500 м Через каждые 800 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен температурный, ветровой и конденсационный теплообмен конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной однооу градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла		ОПИ ()
Прямыми и обратными 20. Если протяженность магистрали более 1000 м, задвижки устанавливают: Через каждые 500 м Через каждые 500 м Через каждые 1000 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогарснача, влажностный режим, воздухопроницаемость Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная и архитектурная акустика Теплопередача, строительная и архитектурная акустика Теплопередача, строительная и архитектурная акустика Теплопередача, пучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплообмен Конвективный, поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла		OHK-0.2
20. Если протяженность магистрали более 1000 м, задвижки устанавливают: Через каждые 500 м Через каждые 1000 м Через каждые 1000 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная светотехника и изоляция Теплопередача, строительная светотехника и изоляция Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмен в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла		
устанавливают: Через каждые 500 м Через каждые 100 м Через каждые 1000 м Через каждые 1000 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная и архитектурная акустика Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха, помещения и внутренней поверхности ограждения, равной одното градусу, поредается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур	Прямыми и обратными	
Через каждые 500 м Через каждые 100 м Через каждые 800 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная оветотехника и изоляция Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	20. Если протяженность магистрали более 1000 м, задвижки	
Через каждые 500 м Через каждые 100 м Через каждые 1000 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмен в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждений, равной одного градусу, передастся одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	устанавливают:	
Через каждые 800 м Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Через каждые 500 м	OHK-6.2
 Через каждые 1000 м 21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла 	Через каждые 100 м	
21. Какие явления и вопросы изучает дисциплина «Теплогазоснабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обсих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла		
«Теплогазоснабжение и вентиляция»? Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, пучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Температурный, ветровой и конденсационный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Через каждые 1000 м	
Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха, помещения и внутренней поверхности ограждения, равной одного градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	21. Какие явления и вопросы изучает дисциплина	
Теплопередача, влажностный режим, воздухопроницаемость Теплопередача, строительная светотехника и изоляция Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	«Теплогазоснабжение и вентиляция»?	
Теплопередача, строительная и архитектурная акустика Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Теплопередача, влажностный режим, воздухопроницаемость	OHK-0.2
Теплопередача, влажностный режим, воздухопроницаемость, светотехника и акустика 22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Теплопередача, строительная светотехника и изоляция	
22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Теплопередача, строительная и архитектурная акустика	
22. Основные составляющие теплообмена в помещении? Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Теплопередача, влажностный режим, воздухопроницаемость,	
Конвективный, лучистый, и струйный теплообмен Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	светотехника и акустика	
Ветровой, гравитационный и влажностный теплообмен Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла		
Конвективный, поверхностный и испарительный теплообмен Температурный, ветровой и конденсационный теплообмен 23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Конвективный, лучистый, и струйный теплообмен	
23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Ветровой, гравитационный и влажностный теплообмен	OHK-0.2
23. Определение общего сопротивления теплопередачи конструкции? Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Конвективный, поверхностный и испарительный теплообмен	
Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Температурный, ветровой и конденсационный теплообмен	
Время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	23. Определение общего сопротивления теплопередачи	
время в часах, в течение которого через один квадратный метр наружной поверхности ограждения при разности температур воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	конструкции?	
воздуха с обеих сторон ограждений, равной одного градусу, передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Время в часах, в течение которого через один квадратный метр	OHK-6.2
передается одна единица тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	наружной поверхности ограждения при разности температур	
Время в часах, в течение которого один квадратный метр поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	воздуха с обеих сторон ограждений, равной одного градусу,	
поверхности ограждения при разности температур воздуха помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	передается одна единица тепла (размерность м2*град/Вт)	
помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Время в часах, в течение которого один квадратный метр	
помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	поверхности ограждения при разности температур воздуха	
одному градусу воспринимает одну единицу тепла (размерность м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла		
м2*град/Вт) Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла		
наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла		
наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла	Время в часах, в течение которого один квадратный метр	
наружной поверхности ограждения и наружного воздуха, равной одному градусу, отдает одну единицу тепла		
равной одному градусу, отдает одну единицу тепла		
	(размерность м2*град/Вт)	

Время в часах, характеризующее интенсивность восприятия тепла материалом при колебании температуры на его поверхности	
(размерность Вт/(м2*град))	
24. Определение понятия коэффициента теплопроводности	
материала?	
Количество тепла передающегося в течение одного часа через один квадратный метр образца материала в виде плотной стены толщенной один метр при разности температур на противоположных поверхностях образца, равной одному градусу (размерность Вт/ (м2* оС)	ОПК-6.2
Количество тепла, передающегося в течение одного часа через	
один квадратный метр поверхности ограниченная при разности температур воздуха с обеих сторон ограждения равной одному градусу (размерность Вт (м2*град)	
Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (
размерность Вт (м2*град);	
Количество тепла, необходимое для нагревания одного килограмма	
материала на один градус (размерность Дж (кг*град))	
25. Что представляет собой конвективный теплообмен?	
Перенос тепла упругими волнами и путем диффузии электронов	
Перенос тепла между движущими частицами жидкости и газа	ОПК-6.2
Перенос тепла кинетической энергией молекул тела	
Перенос тепла электромагнитным излучением от одной среды к другой	
Вариант 2	
1. Определение общего сопротивления теплопередачи	
конструкции?	ОПК-6.2
Время в часах, в течение которого через один квадратный метр	O11K-0.2
наружной поверхности ограждения при разности температур	
воздуха с обеих сторон ограждений, равной одного градусу,	
передается одна единица тепла (размерность м2*град/Вт)	
Время в часах, в течение которого один квадратный метр	
поверхности ограждения при разности температур воздуха	
помещения и внутренней поверхности ограждения, равной одному градусу воспринимает одну единицу тепла (размерность	
м2*град/Вт)	
•	
Время в часах, в течение которого один квадратный метр наружной	
Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной	
Время в часах, в течение которого один квадратный метр наружной поверхности ограждения при разности температур наружной поверхности ограждения и наружного воздуха, равной одному	

2. Определение понятия коэффициента теплопроводности (размерность Вт/(м2*град)) 2. Определение понятия коэффициента теплопроводности материала? Количество тепла, передающегося в течение одного часа через один квадратный метр образца материала в виде плотной стены толпциной в один метр при разности температур на противоположных поверхностях образца, равной одному градусу (размерность Вт/ (м2*град) Количество тепла, передающегося в течение одного часа через один квадратный метр поверхности, ограниченной при разности температур воздуха с обеих сторон ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От объемной массы материала и его влажности От пористости материала и его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии		
Материала? Количество тепла, передающегося в течение одного часа через один квадратный метр образца материала в виде плотной стены толщиной в один метр при разности температур на противоположных поверхностях образца, равной одному градусу (размерность Вт/ (м2*град) Количество тепла, передающегося в течение одного часа через один квадратный метр поверхности, ограниченной при разности температур воздуха с обеих сторон ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхности ограждения, равной одному градусу (размерность Вт (м2*град)) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала и его температуры От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергобережения? По величине традусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости наружных ограждающих конструкций По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		
Материала? Количество тепла, передающегося в течение одного часа через один квадратный метр образца материала в виде плотной стены толщиной в один метр при разности температур на противоположных поверхностях образца, равной одному градусу (размерность Вт/ (м2*град) Количество тепла, передающегося в течение одного часа через один квадратный метр поверхности, ограниченной при разности температур воздуха с обеих сторон ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхности ограждения, равной одному градусу (размерность Вт (м2*град)) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала и его температуры От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергобережения? По величине традусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости наружных ограждающих конструкций По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		
Количество тепла, передающегося в течение одного часа через один квадратный метр образца материала в виде плотной стены толщиной в один метр при разности температур на противоположных поверхностях образца, равной одному градусу (размерность Вт/ (м2*град) Количество тепла, передающегося в течение одного часа через один квадратный метр поверхности, ограниченной при разности температур воздуха с обеих сторон ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внугренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине приведенных затрат на строительство и эксплуатацию		
квадратный метр образца материала в виде плотной стены толщиной в один метр при разности температур на противоположных поверхностях образца, равной одному градусу (размерность Вт/ (м2*град) Количество тепла, передающегося в течение одного часа через один квадратный метр поверхности, ограниченной при разности температур воздуха с обеих сторон ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалав? От вида материала, объемной массы, влажности материала и температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине традусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине приведенных затрат на строительство и эксплуатацию	-	ОПК-6.2
толщиной в один метр при разности температур на противоположных поверхностях образца, равной одному градусу (размерность Вт/ (м2*град) Количество тепла, передающегосся в течение одного часа через один квадратный метр поверхности, ограниченной при разности температур воздуха с обсих сторон ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кт*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала и его влажности От пористости материала и его температуры От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине приведенных затрат на строительство и эксплуатацию		
градусу (размерность Вт/ (м2*град) Количество тепла, передающегося в течение одного часа через один квадратный метр поверхности, ограниченной при разности температур воздуха с обеих сторон ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		
Количество тепла, передающегося в течение одного часа через один квадратный метр поверхности, ограниченной при разности температур воздуха с обеих сторон ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		
квадратный метр поверхности, ограниченной при разности температур воздуха с обеих сторон ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала и его влажности От пористости материала и его температуры От объемной массы материала и его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		
градусу (размерность Вт (м2*град) Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	<u>-</u>	
Количество тепла, воспринимаемое одним квадратным метром внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалаов? От вида материала, объемной массы, влажности материала и температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		
внутренней поверхности ограждения в течение одного часа при разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине приведенных затрат на строительство и эксплуатацию		
разности температур между воздухом помещения и внутренней поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине приведенных затрат на строительство и эксплуатацию		
поверхностью ограждения, равной одному градусу (размерность Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине приведенных затрат на строительство и эксплуатацию		
Вт (м2*град) Количество тепла, необходимое для нагревания одного килограмма материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине приведенных затрат на строительство и эксплуатацию		
материала на один градус (размерность Дж (кг*град)) 3. От каких факторов зависит величина коэффициента геплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		
3. От каких факторов зависит величина коэффициента теплопроводности строительных материалов? От вида материала, объемной массы, влажности материала и температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	Количество тепла, необходимое для нагревания одного килограмма	
ОПК-6.2 От вида материала, объемной массы, влажности материала и температуры материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	материала на один градус (размерность Дж (кг*град))	
От вида материала, объемной массы, влажности материала и температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине приведенных затрат на строительство и эксплуатацию	3. От каких факторов зависит величина коэффициента	
температуры материала От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		ОПК-6.2
От объемной массы материала и его влажности От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	-	
От пористости материала и его температуры От объемной массы материала его толщины в ограждении и цвета материала 4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		
4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	От пористости материала и его температуры	
4. На основании, каких предпосылок определяется приведенное сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	От объемной массы материала его толщины в ограждении и цвета	
сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	материала	
сопротивление теплопередаче ограждающих конструкций из условий энергосбережения? По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	4. На основании, каких предпосылок определяется приведенное	
условии энергосоережения: По величине градусо-суток отопительного периода, назначения зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	сопротивление теплопередаче ограждающих конструкций из	
зданий и вида ограждающей конструкций По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	условий энергосбережения?	OHK-6,2
По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	По величине градусо-суток отопительного периода, назначения	
По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию		
По величине приведенных затрат на строительство и эксплуатацию		
	По величине стоимости тепловой энергии	
	По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций	
	По величине стоимости тепловой энергии По величине стоимости наружных ограждающих конструкций По величине приведенных затрат на строительство и эксплуатацию	

5. Классификация влажностного режима помещений в соответствии со СП «Тепловая защита зданий?	OHE (2
Сухой, нормальный, влажный, мокрый	ОПК-6.2
Нормально-сухой, нормально-влажный	
Очень сухой, нормально-влажный, очень влажный	
Сухо-нормальный, средне-влажный, сильно-мокрый	
6. Понятие точки росы?	
Температура воздуха, при которой его водяные пары становятся насыщенными (размерность, град)	ОПК-6.2
Температура наружного воздуха, действие которой на поверхности	
ограждения подобно (эквивалентно) действию солнечной	
радиации на эту поверхность (размерность, град)	
Парциальное давление пара, при котором водяной пар становится	
насыщенным при данной температуре (размерность мм. рт.ст)	
Парциальное давление водяного пара при данной насыщенности	
(размерность мм.рт.ст)	
7. Физический смысл сопротивления ограждения?	
Время в часах, в течение которого через один квадратный метр	
поверхности слоя ограждения при разности упругости водяного	ОПК-6.2
пара с обеих сторон этого слоя, равного одному миллиметру	
ртутного столба, передается путем диффузии один водяного пара	
(размерность м2,мм.рт.ст.ч\с)	
Кол-во водяного пара в граммах, проходящие в течении одного часа через один квадратный метр плоской стенки, сделанной из	
данного материала, имеющая толщину равную одному метру,	
при разности упругости водяного пара с обеих сторон, равной	
одному миллиметру ртутного столба (размерность	
г\м,мм.рт.ст.ч.)	
8. Какие зоны влажности существуют на территории России,	
согласно СНИП «Строительная климатология»?	
Влажная, нормальная, сухая	ОПК-6.2
Мокрая, влажная, нормальная и сухая	
Очень влажная, нормальная, сухая, очень сухая	
Очень влажная, влажная, нормальная, нормально-влажная, сухая,	
сухо-нормальная, очень сухая	
9. Основные факторы, определяющие воздушный режим	
здания?	OTTA CA
Гравитационное и ветровое давление воздуха	ОПК-6.2
Инфильтрационные процессы в здании	
Пересечение воздуха между смежными помещениями	
Аэрация воздуха	
<u> </u>	

10. Физический смысл сопротивления воздухо- проникновения	
в слой ограждения?	ОПК-6.2
Время в часах, в течении которого через один квадратный метр	
слоя ограждения при разности давления воздуха с обеих его	
сторон равной одному миллиметру водяного столба, проходит	
один килограмм воздуха (размерность м2,мм.вид,ст.ч\кг)	
Кол-во воздуха в килограммах проходящего в течении одного часа	
через один квадратный метр плоской стены, сделанной из	
данного материала и имеющий толщину, равную одному метру,	
при разности давлений воздуха с обеих сторон ее, равной	
одному миллиметру водяного столба (размерность	
кг∖м,мм.вид.ст)	
11. Какие явления и вопросы изучает дисциплина	
«Теплогазоснабжение и вентиляция»?	
Теплопередача, влажностный режим, воздухопроницаемость	ОПК-6.2
Теплопередача, строительная светотехника и изоляция	
Теплопередача, строительная и архитектурная акустика	
Теплопередача, влажностный режим, воздухопроницаемость,	
светотехника и акустика	
12. При подземной прокладке трубопроводов и непроходных	
каналах применяются только.	
Подвесные опоры	ОПК-6.2
Катковые опоры	
Неподвижные опоры	
Скользящие опоры на бетонных подушках	
13. Расстояние на участках между неподвижными опорами	
Определяются в зависимости от	ОПК-6.2
Скорости теплоносителя Диаметра трубопроводов	
Рельефа местности	
От состава грунтов	
От состава груптов	
14. Надземная прокладка трубопроводов не допускается	
На территории промышленных предприятий	
На территории детских дошкольных, школьных и лечебно-	ОПК-6.2
профилактических учреждениях	
На территории, не подлежащей застройки	
Вне населенных пунктов	

15. Индивидуальный тепловой пункт – это	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	ОПК-6.2
установок двух зданий или более	
Присоединения только систем отопления и горячего	
водоснабжения	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения на отдельную квартиру	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	
установок одного здания или его части	
16. Центральный тепловой пункт – это	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	ОПК-6.2
установок двух зданий или более	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	
установок одного здания или его части	
Присоединения только систем отопления и горячего	
водоснабжения	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения на отдельную квартиру	
bedeenwenens na erdenburgte nbap inpy	
17. Максимальная температуре воды в подающем	
трубопроводе тепловых сетей до ЦТП принимается:	OHII (A
100 °C	ОПК-6.2
Ровно 130 °C	
Не выше 150 °C	
70 °C, а в ЦТП догревается	
18. Запорная арматура устанавливается:	
На всех подающих и обратных трубопроводах тепловых сетей на	ОПК-6.2
вводе их из тепловых пунктов	O11K-0.2
На всех подающих и обратных трубопроводах тепловых сетей на	
выводе их из тепловых пунктов	
На всех подающих и обратных трубопроводах тепловых сетей на	
вводе и выводе их из тепловых пунктов	
На любых трубопроводах	

19. Тепловые сети могут быть:	
Разветвленными и конечными	ОПК-6.2
Кольцевыми и тупиковыми	OHK-0.2
Резервированными и нерезервированными	
Прямыми и обратными	
20. Если протяженность магистрали более 1000 м, задвижки	
устанавливают:	OHIII (A
а) Через каждые 500 м	ОПК-6.2
б) Через каждые 100 м	
в) Через каждые 800 м	
г) Через каждые 1000 м	
21. Основные факторы, определяющие воздушный режим	
здания?	
Гравитационное и ветровое давление воздуха	ОПК-6.2
Инфильтрационные процессы в здании	
Пересечение воздуха между смежными помещениями	
Аэрация воздуха	
22. Основные составляющие теплообмена в помещении?	
Конвективный, лучистый, и струйный теплообмен	ОПК-6.2
Ветровой, гравитационный и влажностный теплообмен	
Конвективный, поверхностный и испарительный теплообмен	
Температурный, ветровой и конденсационный теплообмен	
23. Что представляет собой лучистый теплообмен?	
Перенос тепла движущимися частицами жидкости или газа между	ОПК-6.2
поверхностями	
Перенос энергии в виде электромагнитных волн между двумя	
взаимно излучающими поверхностями	
Перенос тепла лучом диффузии электронов	
Перенос тепла лучом последовательной передачи кинетической	
энергии молекулы тела при их соприкосновении	
24. При подземной прокладке трубопроводов и непроходных	
каналах применяются только	ОПК-6.2
Подвесные опоры	VIII0,2
Катковые опоры	
Неподвижные опоры	
Скользящие опоры на бетонных подушках	
25. Расстояние на участках между неподвижными опорами	
определяются в зависимости от	ОПК-6.2
Скорости теплоносителя	U11K-0.2
Диаметра трубопроводов	
Рельефа местности	
Состава грунтов	

Вариант 3	
1. Что представляет собой конвективный теплообмен?	
Перенос тепла упругими волнами и путем диффузии электронов Перенос тепла между движущими частицами жидкости и газа Перенос тепла кинетической энергией молекул тела Перенос тепла электромагнитным излучением от одной среды к другой	ОПК-6.2
2. В каких средах может иметь место теплопроводность в чистом	
виде В твердой, жидкой и газообразной	ОПК-6.2
Только в сплошной твердой	
Только в жидкой и твердой	
Только в жидкой	
3. Что представляет собой теплопроводность? Перенос тепла движущимися частицами тела с разной плотностью среды	ОПК-6.2
Молекулярное явление, состоящее в последовательной передаче кинетической энергии молекул тела при их соприкосновении Тепловое излучение между частицами тела с разной температурой	
Перемещение тепла, при котором движение частиц тела вызывается внешними механическими воздействиями	
4. Основные факторы обуславливающие комфортность	
человека в помещении:	
Температура и относительная влажность внутреннего воздуха	ОПК-6.2
Температура, относительная влажность и подвижность воздуха, а	
также температура внутренней поверхности ограждений	
Абсолютная влажность воздуха и температура внутренней	
поверхности наружных стен и окон	
Радиационная температура помещения	
5. Определение стационарного процесса теплопередачи в	
5. Определение стационарного процесса теплопередачи в ограждении	
Постоянство парциональных давлений водяного пара по обе	ОПК-6.2
Стороны наружного ограждения	
Постоянство во времени, по направлению, величине теплового потока и температуры в ограждениях	
Постоянство гравитационного и ветрового давления на наружное	
ограждение	
Постоянство кондуктивной составляющей теплового потока	

(TO	
6. Какие явления и вопросы изучает дисциплина	
«Теплогазоснабжение и вентиляция»?	ОПК-6,2
Теплопередача, строительная светотехника и изоляция	O11K-0.2
Теплопередача, влажностный режим, воздухопроницаемость	
Теплопередача, строительная и архитектурная акустика	
Теплопередача, влажностный режим, воздухопроницаемость,	
светотехника и акустика	
7. Основные составляющие теплообмена в помещении?	
Ветровой, гравитационный и влажностный теплообмен	OHIC ()
Конвективный, лучистый, и струйный теплообмен	ОПК-6.2
Конвективный, поверхностный и испарительный теплообмен	
Температурный, ветровой и конденсационный теплообмен	
8. В каких средах может иметь место конвективный	
теплообмен?	
Только в жидких	ОПК-6.2
В жидких, газообразных	
Только в газообразных	
В жидких, газообразных и твердых	
9. Какие существуют виды конвекции?	
Только естественная	
Естественная и вынужденная	ОПК-6.2
Только вынужденная	
Механическая, естественная и гравитационная	
механическая, естественная и гравитационная	
10. В каких средах может иметь место лучистый теплообмен?	
В жидкой и газообразной	
В газообразной, в пустоте	ОПК-6.2
В жидкой, твердой и газообразной	
Только в газообразной	
11. Что представляет собой лучистый теплообмен?	
Перенос тепла движущимися частицами жидкости или газа между	
поверхностями	ОПК-6.2
Перенос энергии в виде электромагнитных волн между двумя	
взаимно излучающими поверхностями	
Перенос тепла лучом диффузии электронов	
Перенос тепла лучом последовательной передачи кинетической	
энергии молекулы тела при их соприкосновении	
12. При подземной прокладке трубопроводов и непроходных	
каналах применяются только.	
Подвесные опоры	ОПК-6.2
Катковые опоры	
Неподвижные опоры	
,,	I

Скользящие опоры на бетонных подушках	
13. Расстояние на участках между неподвижными опорами	
определяются в зависимости от	ОПК-6.2
Скорости теплоносителя	O11K-0.2
Диаметра трубопроводов	
Рельефа местности	
Состава грунтов	
14. Надземная прокладка трубопроводов не допускается	
На территории промышленных предприятий	
На территории детских дошкольных, школьных и лечебно-	ОПК-6.2
профилактических учреждениях	
На территории, не подлежащей застройки	
Вне населенных пунктов	
15. Индивидуальный тепловой пункт – это	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	ОПК-6.2
установок двух зданий или более	
Присоединения только систем отопления и горячего	
водоснабжения.	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения на отдельную квартиру	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	
установок одного здания или его части	
16. Центральный тепловой пункт – это	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	ОПК-6.2
установок двух зданий или более	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения и технологических теплоиспользующих	
установок одного здания или его части	
Присоединения только систем отопления и горячего	
водоснабжения	
Присоединения систем отопления, вентиляции, горячего	
водоснабжения на отдельную квартиру	
17. Максимальная температура воды в подающем	
трубопроводе тепловых сетей до ЦТП принимается	
100 °C	ОПК-6.2
Ровно 130 °C	
Не выше 150 °C	
70 °C, а в ЦТП догревается	

18. Запорная арматура устанавливается	
На всех подающих и обратных трубопроводах тепловых сетей на	ОПК-6.2
вводе их из тепловых пунктов	OHK-0.2
На всех подающих и обратных трубопроводах тепловых сетей на	
выводе их из тепловых пунктов	
На всех подающих и обратных трубопроводах тепловых сетей на	
вводе и выводе их из тепловых пунктов	
На любых трубопроводах	
19. Тепловые сети могут быть	
Разветвленными и конечными	
Кольцевыми и тупиковыми	ОПК-6.2
Резервированными и нерезервированными	
Прямыми и обратными	
20. Если протяженность магистрали более 1000 м, задвижки	
устанавливают.	
Через каждые 500 м	ОПК-6.2
Через каждые 100 м	
Через каждые 800 м	
Через каждые 1000 м	
21. Какие вопросы изучает курс «Теплогазоснабжение и	
вентиляция?:	
а) Теплопередача, влажностный режим, воздухопроницание	ОПК-6.2
б) Теплопередача, строительная светотехника и изоляция	
в) Теплопередача, акустика	
г) Теплопередача, влажностный режим, воздухопроницание,	
светотехника и акустика	
22. Основные составляющие теплообмена в помещении?:	
	ОПК-6.2
а) Конвективный, лучистый, и струйный теплообмен	O11K-0.2
б) Ветровой, гравитационный и влажностный теплообмен	
в) Конвективный, поверхностный и испарительный теплообмен	
г) Температурный, ветровой и конденсационный теплообмен	
23. В каких средах может иметь место конвективный	
теплообмен?	
В жидких, газообразных	ОПК-6.2
Б жиоких, газоооразных Только в жидких	
Только в жиоких Только в газообразных	
•	
В жидких, газообразных и твердых	

24. Какие существуют виды конвекции?	
Естественная и вынужденная	
Только естественная	ОПК-6.2
Только вынужденная	
Механическая, естественная и гравитационная	
25. В каких средах может иметь место лучистый теплообмен?	
В газообразной, в пустоте	
В жидкой и газообразной	ОПК-6.2
В жидкой, твердой и газообразной	
Только в газообразной	

Ключ

№	1	2	3	4	5
1	A	В	A	A	A
2	В	A	С	Е	C
3	A	В	A	C	Е
4	В	A	В	A	A
5	C	A	В	Е	E
6	A	A	В	A	В
7	В	С	С	В	A

8	A	В	В	A	E
9	A	С	В	C	В
10	В	A	A	A	E
11	A	A	C	C	D
12	A	В	C	В	A
13	В	В	C	E	E
14	В	A	E	A	E
15	A	A	A	В	A
16	В	C	C	D	D
17	С	A	E	A	A
18	A	В	D	E	E
19	С	A	A	В	A
20	A	В	C	Е	D