Документ подписан простой элект Мийнотерство науки и высшего образования РФ
Информация о влежне ральное государственное бюджет ное образовательное учреждение ФИО: Игнатенко Виталий иванович
Должность: Проректор по образовательной деятельности и мень ком образовательное учреждение должность: Проректор по образовательной деятельности и мень ком образования
Дата подписания Заполя рибый государственный университет им. Н. М. Федоровского» Уникальный программный ключ:

а49ае 343аf 5448 d45 d7 e 3 e 1 e 4996 59 da 8109 ba 78

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

«Теория пирометаллургических процессов»

$oldsymbol{\Phi}$ акультет: $\underline{\Gamma T \Phi}$	
Направление подготовки: <u>22.03.02 «Металлургия»</u>	
Направленность (профиль): «Прогрессивные методы получения цвет	ных металлов»
Уровень образования: <u>бакалавриат</u> Кафедра « <u>Металлургии, машин и оборудования</u> » наименование кафедры	
Разработчик ФОС:	
К.с-х.н., доцент	Носова О.В.
(должность, степень, ученое звание) (подпись)	(ФИО)

Оценочные материалы по дисциплине рассмотрены и одобрены на заседании кафедры, протокол № $\underline{2}$ от « $\underline{07}$ » $\underline{05}$ 2025 г.

Заведующий кафедрой к.т.н., доцент Крупнов Л.В.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения
компетенции	
ПК-2: Выявляет объекты для	ПК-2.1: Анализирует качество технологического процесса,
улучшения в технике и	качества продукции по результатам аналитического контроля;
технологии	

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые	Формируемая	Наименование	
разделы (темы)	компетенция	оценочного	Показатели оценки
дисциплины		средства	
Введение	ПК-2	Тестовые задания	Решение всех тестовых
			заданий по темам
Теория процессов	ПК-2	Тестовые задания	Решение всех тестовых
обжига, плавки,			заданий по темам
конвертирования			
Строение и физико-	ПК-2	Тестовые задания	Решение всех тестовых
химические свойства			заданий по темам
твердых тел			
Фазовые равновесия в	ПК-2	Тестовые задания	Решение всех тестовых
системах Ме-Х, Р-Т-Х			заданий по темам
диаграмм состояния			
Диссоциация химических	ПК-2	Тестовые задания	Решение всех тестовых
соединений			заданий по темам
Основы теории испарения	ПК-2	Тестовые задания	Решение всех тестовых
и конденсации		, ,	заданий по темам
Окисление металлов	ПК-2	Тестовые задания	Решение всех тестовых
			заданий по темам
Физические и физико-	ПК-2	Тестовые задания	Решение всех тестовых
химические свойства			заданий по темам
жидких металлов,			
штейнов, шлаков			
Расчет баланса	ПК-2	Тестовые залания	Решение всех тестовых
Расчет баланса металлургической схемы	ПК-2	Тестовые задания	Решение всех тестовы заданий по темам

Модели активностей компонентов шлаков и штейнов	ПК-2	Тестовые задания	Решение всех тестовых заданий по темам
Взаимодействие сульфидных и оксидных фаз	ПК-2	Тестовые задания	Решение всех тестовых заданий по темам
Кристаллизационные методы рафинирования металлов	ПК-2	Тестовые задания	Решение всех тестовых заданий по темам
Потери металлов со шлаками	ПК-2	Тестовые задания	Решение всех тестовых заданий по темам
Зачет	ПК-2	Решение всех тестовых заданий по темам	Решение всех тестовых заданий по темам

1. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	Наименование	Сроки	Шкала	Критерии
	оценочного средства	выполнения	оценивания	оценивания
Про	межуточная аттестация в	форме «Зачета»		
	Тестовые задания	В течении	от 0 до 5 баллов	Зачет/Незачет
		обучения по		
		дисциплине		
ИТС	РГО :	-	баллов	-
Кри	терии оценки результатов о	бучения по дисци	плине:	
Пороговый (минимальный) уровень для аттестации в форме				
зачета – 75 % от максимально возможной суммы баллов				

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

Зачет выставляется при сдаче студентом всех тестовых заданий

Для очной, очно-заочной формы обучения Задания для текущего контроля и сдачи дисциплины

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
(тестирование)	
Вариант 1	

1. Сталь относится к металлам:	ПК-2
1. Редким	1111 2
2. Цветным	
3. Черным	
4. Легким	
1. JICI KHM	
2. Рутений относится к металлам:	ПК-2
1. Цветным	
2. Радиоактивным	
3. Благородным	
4. Тяжелым	
3. Какие процессы относятся к гидрометаллургическим?	ПК-2
1. Хлорирующий обжиг	111X-2
2. Обжиг в кипящем слое	
3. Электролиз с растворимыми анодами	
4. Агломерирующий обжиг	
4. Какая реакция протекает при кальцинирующем обжиге?	ПК-2
1. NiS + $O_2 \rightarrow NiO + SO_2$	
2. $PbO + C \rightarrow Pb + CO$	
$3. CaCO_3 \rightarrow CaO + CO_2$	
$4. \operatorname{ZnS} + 2O_2 = \operatorname{ZnSO}_4$	
5. Исходя из указанных значений термодинамических функций и температуры, определить характер и условия протекания	ПК-2
реакции:	
$2H_{2(r)}+O_{2(r)}=2H_2O_{(r)}$	
T=1090 K; ΔH=-485,6 кДж; ΔS=-89,4 Дж/К	
1. В системе наступило равновесие	
2. Реакция обратима, в указанных условиях протекает прямая	
реакция	
3. Реакция необратима, протекает в прямом направлении	
4. Реакция необратима, прямая реакция невозможна	
6. Исходя из указанных значений термодинамических функций и	ПК-2
температуры, определить характер и условия протекания	
реакции:	
$CO_2+H_2=CO+H_2O$	
T=298 K; ΔH=40 кДж; ΔS=40 Дж/К	
1. В системе наступило равновесие	
2. Реакция обратима, в указанных условиях протекает обратная	
реакция	
3. Реакция необратима, протекает в прямом направлении	
4. Реакция необратима, прямая реакция невозможна	

7. Жидкие шлаки имеют вязкость (Пз):	ПК-2
1. 2-5	
2. 10-20	
3. 20-40	
4. >50	
8. Штейн отличается от файнштейна по содержанию:	ПК-2
1. Fe	111. 2
2. CaO	
3. Cu	
4. Al ₂ O ₃	
9. Интервал температур, при котором очень вязкий шлак	ПК-2
становится очень жидким, для кислых шлаков составляет:	
1. 20-30°C	
$2.50-100^{0}$ C	
3. 150-250°C 4. 200-300°C	
4. 200-300°C	
10. Рафинирование, основанное на большем сродстве металла-	ПК-2
примеси к сере, называется:	
1. Ликвация	
2. Окисление	
3. Сульфидирование	
4. Восстановление	
11. Шлак содержит: SiO ₂ = 18%, FeO= 40%, CaO= 8%	ПК-2
Определить степень кислотности:	
1. 2,55 кислый	
2. 0,86 основной	
3. 0,67 основной	
4. 1,99 кислый	
12. Шлак содержит: SiO ₂ = 19%, FeO = 30 %, CaO = 12%.	ПК-2
Определить степень кислотности:	
1. 2,43 кислый	
2. 0,74 основной	
3. 1,00 основной	
4. 3,02 кислый	

13. Из окисленных никелевых руд состава: NiO – 3,5; Fe_2O_3 - 16 (остальное - Al ₂ O ₃ . MgO . CaO. SiO ₂) получают ферроникель - сплав железо — никель с содержанием никеля 20% (мас.) по реакции: (NiO) + $[Fe] = [Ni]$ + (FeO). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре $T = 1750K$, если: $\frac{X_{Fe}}{X_{Ni}} = 4,20$; $\eta_{FeO}^{\text{ucx}} = 0,2$; $\frac{X_{FeO}}{X_{NiO}} = 388,33$. 1. 0,1% 2. 0,01% 3. 1,00% 4. 0,001%	ПК-2
14. Из окисленных никелевых руд состава: NiO – 3,5; Fe_2O_3 - 22 (остальное – Al ₂ O ₃ . MgO . CaO. SiO ₂ получают ферроникель - сплав железо – никель с содержанием никеля 24% (мас.) по реакции: (NiO) + $[Fe] = [Ni]$ + (FeO). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре $T = 1850$ K, если: $\frac{X_{Fe}}{X_{Ni}} = 3,33$; $\eta_{FeO}^{\text{ucx}} = 0,275$; $\frac{X_{FeO}}{X_{NiO}} = 304,29$. 1. 0,84% 2. 0,36% 3. 0,64% 4. 0,48%	ПК-2
15. Определить остаточное содержание никеля % (мас.) в черновой меди после окислительного рафинирования при температуре 1500 K, если содержание растворенного кислорода в расплаве – 0,2% (мас.), а активность закиси никеля (α_{NiO}) равна 0,1. Если: $Ni\%$ (мол.) = 6,878; $Cu_2O\%$ (мол.) = 0,802 1. 5,98% 2. 6,32% 3. 6,87% 4. 5,26%	ПК-2
16. Определить остаточное содержание никеля % (мас.) в черновой меди после окислительного рафинирования при температуре 1380 K, если содержание растворенного кислорода в расплаве – 0,6% (мас.), а активность закиси никеля (α_{NiO}) равна 0,2. Если: $Ni\%$ (мол.) = 0,764; $Cu_2O\%$ (мол.) = 2,5 1. 0,68% 2. 0,21% 3. 0,46% 4. 0,94%	ПК-2

17. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать $0,2\%$ (мас.): $ [FeO] + [Mn] = [Fe] + MnO $ Температура процесса -1830 К. Температурная зависимость энергии Гиббса образования оксидов выражается уравнениями, $Дж/моль$, $ \Delta G^{\circ}FeO = -239600 + 49,49\ T; $ $ \Delta G^{\circ}MnO = -406200 + 87,9\ T. $ 1. $0,096\%$ 2. $0,01\%$ 3. $0,1\%$ 4. $0,092\%$	ПК-2
 18. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать 0,4% (мас.): [FeO] + [Mn] = [Fe] + MnO Температура процесса – 1850 К. Температурная зависимость энергии Гиббса образования оксидов выражается уравнениями, Дж/моль, ΔG°FeO = -239600 + 49,49 T; ΔG°MnO = -406200 + 87,9 T. 1. 0,061% 2. 0,084% 3. 0,072% 4. 0,052% 	ПК-2
19. Какая величина характеризует полноту восстановления? 1. Константа равновесия 2. Равновесная концентрация 3. Энергия Гиббса 4. Температура	ПК-2
 20. Невозможность одновременно иметь предельно высокое содержание металла в металлической фазе и достигать максимальной полноты восстановления – это: 1. Металлургические «ножницы» 2. Условие восстановления металлов из оксидов 3. Степень раскисления 4. Степень кислотности 	ПК-2

 21. Содержание меди в отвальном шлаке составляет от содержания его в штейне: 1. 5% 2. 0,5% 3. 2,5% 4. 1% 	ПК-2
22. Виды восстановительного обжига: 1. Магнетизирующий и восстановительный 2. Кальцинирующий и восстановительный 3. Хлорирующий и агломерирующий 4. Фторирующий и магнетизирующий	ПК-2
 23. Продукт металлургической плавки, который не содержит достаточного количества ценных компонентов, чтобы оправдать его дальнейшую обработку, называется: 1. Отходящие газы 2. Отвальный шлак 3. Штейн 4. Черновой металл 	ПК-2
24. Процентное содержание оксидов в шлаке: 1. 15-25% 2. 48-50% 3. 60-85% 4. 85-90%	ПК-2
25. Моносиликатом является: 1. 2FeO·SiO ₂ 2. FeO·CaO·2SiO ₂ 3. FeO·SiO ₂ 4. 0,5FeO·0,5CaO·SiO ₂	ПК-2

Вариант 2	
1. Медь относится к металлам:	ПК-2
1. Черным	
2. Тяжелым	
3. Легким	
4. Редким	
2. Марганец относится к металлам:	ПК-2
1. Черным	
2. Тяжелым	
3. Благородным	
4. Легким	
3. Какие процессы относятся к пирометаллургическим?	ПК-2
1. Выщелачивание	
2. Электролиз расплавов	
3. Электролиз с растворимыми анодами	

4. Электроэкстракция	
 4. Какая реакция протекает при магнетизирующем восстановительном обжиге? 1. NiS + O₂→NiO +SO₂ 2. PbO +C →Pb +CO 3. CaCO₃ →CaO + CO₂ 4. 3Fe₂O₃+CO=2Fe₃O₄+CO₂ 	ПК-2
 5. Исходя из указанных значений термодинамических функций и температуры, определить характер и условия протекания реакции: Si_(к)+Ca(OH)_{2(к)}+2NaOH_(к)=Na₂SiO_{3(к)}+CaO_(к)+H_{2(г)} T=298 К; ΔH= -3091 кДж; ΔS=119 Дж/К 1. В системе наступило равновесие 2. Реакция обратима, в указанных условиях протекает обратная реакция 3. Реакция необратима, протекает в прямом направлении 4. Реакция необратима, обратная реакция невозможна 	ПК-2
 6. Исходя из указанных значений термодинамических функций и температуры, определить характер и условия протекания реакции: 2H₂O(r)+N₂(r)=NH₄NO₃ T=405 K; ΔH=247 кДж; ΔS=-316 Дж/К 1. В системе наступило равновесие 2. Реакция необратима, в указанных условиях протекает обратная реакция 3. Реакция необратима, протекает в прямом направлении 4. Реакция необратима, прямая реакция невозможна 	ПК-2
 7. Кислотный оксид в шлаке может быть представлен: 1. SiO₂ 2. CaO 3. ZnO 4. NaCl 	ПК-2
8. Содержание чего в шлаке может быть 85-90%: 1. Металл 2. Оксид 3. Гидроксид 4. Флюс	ПК-2
9. Интервал температур, при котором очень вязкий шлак становится очень жидким, для основных шлаков составляет: 1. 20-30°C 2. 50-100°C 3. 150-250°C 4. 200-300°C	ПК-2

 Процесс, при котором происходит разделение на две фазы в связи с различной плотностью элементов, называется: Ликвация Окисление Сульфидирование Восстановление 	ПК-2
11. Шлак содержит: SiO ₂ = 20%, FeO = 29%, CaO = 9%. Определить степень кислотности. 1. 2,55 кислый 2. 0,86 основной 3. 1,18 основной 4. 1,99 кислый	ПК-2
12. Шлак содержит: SiO ₂ = 21%, FeO = 27 %, CaO = 17%. Определить степень кислотности? 1. 1,03 основной 2. 0,74 основной 3. 1,00 кислый 4. 3,02 кислый	ПК-2
13. Из окисленных никелевых руд состава: NiO -3.5 ; Fe_2O_3 - 24 (остальное - Al_2O_3 . MgO . CaO. SiO ₂) получают ферроникель - сплав железо — никель с содержанием никеля 26% (мас.), по реакции: (NiO) + $[Fe] = [Ni]$ + (FeO). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре $T = 1900$ К. Если: $\frac{X_{Fe}}{X_{Ni}} = 2,99$; $\eta_{FeO}^{ucx} = 0.3$; $\frac{X_{FeO}}{X_{NiO}} = 272.2$. 1. 0,1% 2. 0,01% 3. 1,26% 4. 0,001%	ПК-2
14. Из окисленных никелевых руд состава: NiO -3.5 ; $Fe_2O_3 - 18$ (остальное - Al ₂ O ₃ . MgO . CaO. SiO ₂) получают ферроникель - сплав железо — никель с содержанием никеля 28% (мас.), по реакции: (NiO) + $[Fe] = [Ni]$ + (FeO). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре $T = 1900$ К. Если: $\frac{X_{Fe}}{X_{Ni}} = 2.7$; $\eta_{FeO}^{\text{ucx}} = 0.225$; $\frac{X_{FeO}}{X_{NiO}} = 245.93$. 1. 0,45% 2. 0,36% 3. 0,85%	ПК-2

4 0 400/	
4. 0,48%	
15. Определить остаточное содержание никеля % (мас.) в черновой меди после окислительного рафинирования при температуре 1420 К, если содержание растворенного кислорода в расплаве — 1,0% (мас.), а активность закиси никеля (α_{NiO}) равна 0,3. Если: $Ni\%$ (мол.) = 0,574; $Cu_2O\%$ (мол.) = 4,2 1. 0,38% 2. 0,42% 3. 0,75% 4. 0,50%	ПК-2
16. Определить остаточное содержание никеля % (мас.) в черновой меди после окислительного рафинирования при температуре 1460 К, если содержание растворенного кислорода в расплаве – 1,4% (мас.), а активность закиси никеля (α_{NiO}) равна 0,4. Если: $Ni\%$ (мол.) = 0,516; $Cu_2O\%$ (мол.) = 6,0 1. 0,44% 2. 0,21% 3. 0,36% 4. 0,94%	ПК-2
17. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать $0,6\%$ (мас.): $[FeO] + [Mn] = [Fe] + MnO$ Температура процесса — 1870 К. Температурная зависимость энергии Гиббса образования оксидов выражается уравнениями, Дж/моль, $\Delta G^{\circ}FeO = -239600 + 49,49T;$ $\Delta G^{\circ}MnO = -406200 + 87,9T.$ 1. $0,096\%$ 2. $0,062\%$ 3. $0,013\%$ 4. $0,054\%$	ПК-2
 18. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать 0,8% (мас.):	ПК-2

1. 0,061%	
2. 0,084%	
3. 0,072%	
4. 0,057%	
19. Большей склонностью к переохлаждению (перегреванию) обладают:	ПК-2
1. Шлаки и пирротин	
2. Кислые основания и металл	
3. Кислые силикаты и кремнезем	
4. Штейны и металл	
20. Склонность вещества к переохлаждению (перегреванию) зависит	ПК-2
OT:	
1. Вязкости	
2. Текучести	
3. Температуры плавления	
4. Температуры кипения	
21. Бедный штейн содержит в основном:	ПК-2
1. Цветные металлы	
2. Сульфид железа	
3. Оксиды металлов	
4. Серу в чистом виде	
п. серу в тетом виде	
22. Что относится к рудной плавке?	ПК-2
1. Ликвационная и дистилляционная	
2. Магнетизирующая и восстановительная	
3. Кальцинирующая и агломерационная	
4. Восстановительная и электролиз расплавленных солей	
23. Свойства шлака, от которого зависит разделение жидких	ПК-2
	1111-2
продуктов, это: 1. Вязкость шлака	
2. Текучесть шлака	
3. Температура кипения	
4. Основность или кислотность шлака	
24. Каким бывает шлак по микроструктуре?	ПК-2
1. Прозрачный	
2. Матовый	
3. Стекловидный	
4. Каменный	
25. Потери, при которых шлаковая фаза механически увлекает за	ПК-2
собой капельки металла и штейна, это:	
1. Химические потери	
2. Физические потери	
3. Физико-химические потери	
3. THE SHIP OF THE PROPERTY OF	

Вариант 3		
1. Никель относится к металлам: 1. Черным 2. Тяжелым 3. Легким 4. Редким	ПК-2	
Платина относится к металлам: Платина относится к металлам:	ПК-2	
 Отношение числа молей основных оксидов к числу молей кремнезема - это: Основность шлака Кислотность шлака Степень основности Константа диссоциации 	ПК-2	
 Какая реакция протекает при диссоциации карбонатов? NiS + O₂→NiO +SO₂ PbO +C →Pb +CO CaC →Ca + C₂ CaCO₃ → CaO +CO₂ 	ПК-2	
 5. Исходя из указанных значений термодинамических функций и температуры, определить характер и условия протекания реакции: NH_{3(r)}+HCl_(r)=NH₄Cl_(κ)	ПК-2	

 6. Исходя из указанных значений термодинамических функций и температуры, определить характер и условия протекания реакции: C_{гр.}+H₂O_(г)=CO_(г)+H_{2(г)}	ПК-2
 7. Основный оксид в шлаке может быть представлен: 1. SiO₂ 2. CaO 3. ZnO 4. NaCl 	ПК-2
8. Содержание меди в отвальном шлаке составляет: 1. 0,001% 2. 0,01% 3. 0,1% 4. 1%	ПК-2
 Какова роль шлака в окислительном рафинировании? Разделяет два металла Снижает температуру протекания процесса Отделяет металл от непосредственного контакта с атмосферой Является флюсом в этом процессе 	ПК-2
 Флюс – это: Продукт плавки на штейн Продукт электрорафинирования металлов Вещество, загрязняющее металл своими компонентами Вещество, которое добавляют к руде, для лучшего отделения металлов 	ПК-2
11. Шлак содержит: SiO ₂ = 22%, FeO= 26%, CaO= 15%. Определить степень кислотности. 1. 3,48 кислый 2. 4,86 основной 3. 1,17 основной 4. 2,41 кислый	ПК-2
12. Шлак содержит: SiO ₂ = 23%, FeO= 39 %, CaO= 12%. Определить степень кислотности. 1. 1,01 основной 2. 2,15 кислый 3. 1,44 кислый 4. 2,12 основный	ПК-2

13. Из окисленных никелевых руд состава: NiO $-$ 3,5; Fe_2O_3 - 20 (остальное - Al ₂ O ₃ . MgO . CaO. SiO ₂) получают ферроникель - сплав железо – никель с содержанием никеля 24% (мас.) по реакции: (NiO) + $[Fe] = [Ni]$ + (FeO). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре $T = 1950$ К. Если: $\frac{X_{Fe}}{X_{Ni}} = 3,33$; $\eta_{FeO}^{ucx} = 0,250$; $\frac{X_{FeO}}{X_{NiO}} = 301,50$. 1. 1,1% 2. 0,67% 3. 1,26% 4. 0,89%	ПК-2
14. Из окисленных никелевых руд состава: NiO $-$ 3,5; Fe_2O_3 $-$ 18 (остальное - Al ₂ O ₃ . MgO . CaO. SiO ₂) получают ферроникель - сплав железо $-$ никель с содержанием никеля 28% (мас.), по реакции: (NiO) + $[Fe] = [Ni]$ + (FeO). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре T = 1800K. Если: $\frac{X_{Fe}}{X_{Ni}} = 2,7$; $\eta_{FeO}^{\text{ucx}} = 0,225$; $\frac{X_{FeO}}{X_{NiO}} = 248,33$. 1. 0,54% 2. 0,63% 3. 0,85% 4. 0,79%	ПК-2
15. Определить остаточное содержание никеля % (мас.) в черновой меди после окислительного рафинирования при температуре 1460 K, если содержание растворенного кислорода в расплаве – 1,4% (мас.), а активность закиси никеля (α_{NiO}) равна 0,1. Если: $Ni\%$ (мол.) = 0,129; $Cu_2O\%$ (мол.) = 6,0 1. 0,11% 2. 0,24% 3. 0,35% 4. 0,50%	ПК-2
16. Определить остаточное содержание никеля % (мас.) в черновой меди после окислительного рафинирования при температуре 1420 K, если содержание растворенного кислорода в расплаве – 1,0% (мас.), а активность закиси никеля (α_{NiO}) равна 0,2. Если: $Ni\%$ (мол.) = 0,383; $Cu_2O\%$ (мол.) = 4,2 1. 0,34% 2. 0,21% 3. 0,39% 4. 0,44%	ПК-2

17. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать $1,0\%$ (мас.): $ [FeO] + [Mn] = [Fe] + MnO $ Температура процесса — 1910 К. Температурная зависимость энергии Гиббса образования оксидов выражается уравнениями, $Дж/моль$, $ \Delta G^{\circ}FeO = -239600 + 49,49 T; $ $ \Delta G^{\circ}MnO = -406200 + 87,9 T. $ 1. $0,096\%$ 2. $0,062\%$ 3. $0,013\%$ 4. $0,054\%$	ПК-2
18. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать $1,2\%$ (мас.): $ [FeO] + [Mn] = [Fe] + MnO $ Температура процесса — 1930 К. Температурная зависимость энергии Гиббса образования оксидов выражается уравнениями, Дж/моль, $ \Delta G^{\circ}FeO = -239600 + 49,49T; \ \Delta G^{\circ}MnO = -406200 + 87,9T. $ 1. $0,061\%$ 2. $0,084\%$ 3. $0,052\%$ 4. $0,075\%$	ПК-2
19. Способ, который состоит в восстановлении растворенного окисла особым реагентом – это: 1. Раскисление 2. Диссоциация 3. Кальцинация 4. Плавка	ПК-2
20. В качестве восстановителей промышленность использует:	ПК-2
 21. Богатый штейн содержит в основном: 1. Цветные металлы 2. Сульфид железа 3. Оксиды металлов 4. Серу в чистом виде 	ПК-2

22 11	пи э
22. Что относится к рафинировочной плавке?	ПК-2
1. Ликвационная и дистилляционная	
2. Магнетизирующая и восстановительная	
3. Кальцинирующая и агломерационная	
4. Восстановительная и электролиз расплавленных солей	
23. Процессы восстановления соединений металлов другими	ПК-2
металлами, обладающими значительно большим сродством к	
металлоиду, чем восстанавливаемый металл – это:	
1. Обжиг	
2. Ликвация	
3. Плавка	
4. Металлотермия	
24. Каким бывает шлак по микроструктуре?	ПК-2
1. Прозрачный	
2. Фарфоровидный	
3. Матовый	
4. Мелкий	
25. Потери, при которых шлаковая фаза связывает оксиды	ПК-2
извлекаемого металла — это:	
1. Химические потери	
2. Физические потери	
3. Физико-химические потери	
4. Механические потери	

	Вариант 4	
1. Радий с	относится к металлам:	ПК-2
1.	Черным	
2.	Тяжелым	
3.	Радиоактивным	
4.	Редким	
2. Молиб,	ден относится к металлам:	ПК-2
1.	Тугоплавким	
2.	Тяжелым	
3.	Благородным	
4.	Легким	
3. При ф	орсировании реакций восстановления окислов железа из	ПК-2
шлака пр	и плавках на штейн получаются:	
1.	Бедные штейны	
2.	Металлизированные штейны	
3.	Богатые штейны	
4.	Промышленные штейны	

/ I/	пи
4. Какие процессы относятся к пирометаллургическим?	ПК-2
1. Выщелачивание	
2. Электролиз расплавов	
3. Электролиз с растворимыми анодами	
4. Электроэкстракция	
5. Исходя из указанных значений термодинамических функций	ПК-2
и температуры, определить характер и условия протекания	
реакции:	
$2SO_{2(\Gamma)}+O_{2(\Gamma)}=2SO_{3(\Gamma)}$	
T=1000 K; Δ H= -98,3 кДж; Δ S=8,1 Дж/К	
1. В системе наступило равновесие	
2. Реакция необратима, в указанных условиях протекает обратная	
реакция	
3. Реакция необратима, не протекает в прямом направлении	
4. Реакция необратима, обратная реакция невозможна	
"I cardin necepatima, copatitat peardin necessionia	
6. Исходя из указанных значений термодинамических функций и	ПК-2
температуры, определить характер и условия протекания реакции:	
$Si_{(\kappa)}+Ca(OH)_{2(\kappa)}+2NaOH_{(\kappa)}=Na_2SiO_{3(\kappa)}+CaO_{(\kappa)}+H_{2(\Gamma)}$	
T=298 K; Δ H= -3091 кДж; Δ S=119 Дж/К	
1. В системе наступило равновесие	
2. Реакция обратима, в указанных условиях протекает обратная	
реакция	
3. Реакция необратима, не протекает в прямом направлении	
4. Реакция необратима, обратная реакция невозможна	
7. Амфотерный оксид в шлаке может быть представлен:	ПК-2
$1. \mathrm{SiO}_2$	
2. CaO	
3. ZnO	
4. NaCl	
9 Co hopywayyya wayy p ompayy yaw yawa aa ama haan	пис э
8. Содержание меди в отвальном шлаке составляет:	ПК-2
1. 0,001%	
2. 0,01%	
3. 0,1%	
4. 1%	
9. Белый матт – это штейн, почти полностью состоящий из:	ПК-2
1. FeS	
$2. \mathrm{Cu}_2\mathrm{S}$	
3. CaO	
$4. \operatorname{SiO}_2$	

10. Штейны окислительных плавок содержат: 1. Оксиды металлов 2. Белый мат 3. Оксиды железа 4. Красный шлам	ПК-2
11. Шлак содержит: SiO ₂ = 24%, FeO= 36%, CaO= 16% Определить степень кислотности? 1. 1,02 кислый 2. 1,02 основной 3. 2,05 основной 4. 2,05 кислый	ПК-2
12. Шлак содержит: SiO ₂ = 25%, FeO = 33 %, CaO = 10%. Определить степень кислотности? 1. 1,31 основной 2. 2,44 кислый 3. 1,05 кислый 4. 2,00 основный	ПК-2
13. Из окисленных никелевых руд состава: NiO – 3,5; Fe_2O_3 - 22 (остальное - Al ₂ O ₃ . MgO . CaO. SiO ₂) получают ферроникель - сплав железо – никель с содержанием никеля 20% (мас.), по реакции: (NiO) + [Fe] = [Ni] + (Fe O). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре T = 1850K, если: $\frac{X_{Fe}}{X_{Ni}}$ = 4,20; η_{FeO}^{ucx} = 0,275; $\frac{X_{FeO}}{X_{NiO}}$ = 384,36. 1. 1,89% 2. 0,60% 3. 0,89% 4. 0,43%	ПК-2
14. Из окисленных никелевых руд состава: NiO – 3,5; Fe_2O_3 – 16 (остальное - Al ₂ O ₃ . MgO . CaO. SiO ₂) получают ферроникель - сплав железо – никель с содержанием никеля 26% (мас.), по реакции: (NiO) + [Fe] = [Ni] + (FeO). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре T = 1750K, если: $\frac{X_{Fe}}{X_{Ni}}$ = 2,99; $\eta_{FeO}^{\mu cx}$ = 0,2; $\frac{X_{FeO}}{X_{NiO}}$ = 276,31. 1. 0,46% 2. 0,53% 3. 0,75% 4. 0,69%	ПК-2

15. Определить остаточное содержание никеля % (мас.) в черновой меди после окислительного рафинирования при температуре 1380 К, если содержание растворенного кислорода в расплаве – 0,6% (мас.), а активность закиси никеля (α_{NiO}) равна 0,3. Если: $Ni\%$ (мол.) = 1,145; $Cu_2O\%$ (мол.) = 2,5 1. 1,11% 2. 1,03% 3. 0,99% 4. 1,50%	ПК-2
16. Определить остаточное содержание никеля % (мас.) в черновой меди после окислительного рафинирования при температуре 1420 К, если содержание растворенного кислорода в расплаве – 0,2% (мас.), а активность закиси никеля (α_{NiO}) равна 0,4. Если: $Ni\%$ (мол.) = 15,4; $Cu_2O\%$ (мол.) = 0,8 1.	ПК-2
17. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать $1,4\%$ (мас.): $ [FeO] + [Mn] = [Fe] + MnO $ Температура процесса — 1950 К. Температурная зависимость энергии Гиббса образования оксидов выражается уравнениями, Дж/моль, $ \Delta G^{\circ}FeO = -239600 + 49,49T; $ $ \Delta G^{\circ}MnO = -406200 + 87,9T. $ 1. $0,051\%$ 2. $0,024\%$ 3. $0,015\%$ 4. $0,038\%$	ПК-2

18. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать 1,6% (мас.): [FeO] + [Mn] = [Fe] + MnO	ПК-2
Температура процесса – 1970 К. Температурная зависимость	
энергии Гиббса образования оксидов выражается уравнениями, Дж/моль,	
$\Delta G^{\circ} FeO = -239600 + 49,49 T; \ \Delta G^{\circ} MnO = -406200 + 87,9 T.$	
1. 0,061%	
2. 0,084%	
3. 0,050%	
4. 0,075%	
19. Какие штейны являются коллекторами благородных металлов?	ПК-2
1. Богатые	
2. Бедные	
3. Металлизированные	
4. Промышленные	
20. Как называют рафинирование с помощью серы?	ПК-2
1. Грубое обезмеживание	
2. Тонкое обезмеживание	
3. Ликвация	
4. Металлотермия	
21. Что такое обезмеживание?	ПК-2
1. Выпаривание воды	
2. Перевод металла из твердого состояния в расплав	
3. Удаление меди 4. Обжиг металла	
4. Оожиг металла	
22. Процесс, целью которого является концентрирование цветных	ПК-2
металлов бедных штейнов путем окисления сульфида железа при	
продувке жидкого штейна воздухом – это:	
1. Литье	
2. Восстановление 3. Плавка	
4. Конвертирование	
7 7	HIC 2
23. При раскислении, элемент с большим сродством к кислороду,	ПК-2
растворяющийся в расплавленном рафинированном металле, называют:	
1. Раскислителем	
2. Окислителем	
3. Раскисленным элементом	
4. Окисленным элементом	
	1

24. Каким бывает шлак по микроструктуре?	ПК-2
1. Прозрачный	
2. Мелкий	
3. Матовый	
4. Крупнокристаллический	
25. Потери, при которых во время плавки на штейн растворение	ПК-2
сульфидов в шлаке – это:	
1. Химические потери	
2. Физические потери	
3. Физико-химические потери	
4. Механические потери	

	Вариант 5		
1. Галлий	относится к металлам:	ПК-2	
1.	Черным		
2.	Тяжелым		
3.	Радиоактивным		
4.	Рассеянным		
2. Лантан	относится к металлам:	ПК-2	
1.	Редкоземельным		
2.			
3.	Благородным		
4.	Легким		
3. Какие	процессы относятся к гидрометаллургическим?	ПК-2	
1.	Хлорирующий обжиг		
2.			
3.	1 1 1		
4.	Агломерирующий обжиг		
4 . Для ки	ислых силикатных сплавов с большим содержанием SiO_2	ПК-2	
	между точкой начала размягчения и температурой полного		
	ения 200-300 °C - это:		
-	. Критерий определения кислотности		
	2. Первое правило Мостовича		
	3. Второе правило Мостовича		
	4. Критерий определения основности		
	• • •		

5. Исходя из указанных значений термодинамических функций и температуры, определить характер и условия протекания реакции: $2H_2O_{(r)}+N_{2(r)}=NH_4NO_3$ $T=405 \text{ K}; \Delta H=247 \text{ кДж}; \Delta S=-316 \text{ Дж/K}$ 1. В системе наступило равновесие 2. Реакция необратима, в указанных условиях протекает обратная реакция 3. Реакция необратима, протекает в прямом направлении 4. Реакция необратима, прямая реакция невозможна	ПК-2
6. Исходя из указанных значений термодинамических функций и температуры, определить характер и условия протекания реакции: $2H_2O_{(r)}+N_{2(r)}=NH_4NO_3$ $T=405~K$; $\Delta H=24,7~\kappa Дж$; $\Delta S=31,6~Дж/K$ 1. В системе наступило равновесие 2. Реакция обратима, в указанных условиях протекает обратная реакция 3. Реакция необратима, протекает в прямом направлении 4. Реакция необратима, прямая реакция невозможна	ПК-2
7. Способность к кристаллизации достигается при некоторой средней температуре. Для шлаков она составляет: 1. 100-200°C ниже температуры плавления 2. 100-200°C выше температуры плавления 3. 100-200°C ниже температуры кипения 4. 100-200°C выше температуры кипения	ПК-2
8. Шлак содержит в себе железа: 1. 1-2% 2. 0,1-1% 3. 2-5% 4. 5-10%	ПК-2
9. Красный шлам — это когда много: 1. Fe ₂ O ₃ 2. Cu ₂ S 3. FeS 4. SiO ₂	ПК-2
10. Обжиг, цель которого удалить серу и перевести порошковый материал в пористый кусковой продукт – это: 1. Окислительный обжиг 2. Кальцинирующий обжиг 3. Восстановительный обжиг 4. Обжиг с агломерацией	ПК-2

11. Шлак содержит: SiO ₂ = 26%, FeO= 31%, CaO= 18%. Определить степень кислотности. 1. 2,02 кислый 2. 1,15 основной 3. 2,02 основной 4. 1,15 кислый	ПК-2
12. Шлак содержит: SiO ₂ = 37%, FeO= 28 %, CaO= 20%. Определить	ПК-2
степень кислотности.	
1. 2,31 основной	
2. 2,44 кислый 3. 1,05 кислый	
4. 1,65 основный	
13. Из окисленных никелевых руд состава: $NiO - 3.5$; $Fe_2O_3 - 24$	ПК-2
(остальное - Al_2O_3 . MgO . CaO. SiO ₂) получают ферроникель - сплав железо — никель с содержанием никеля 24% (мас.), по реакции: (NiO) + [Fe] = [Ni] + (FeO). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре T = 1900K, если: $\frac{X_{Fe}}{X_{Ni}}$ = 3,33; $\eta_{FeO}^{\text{исх}}$ = 0,3; $\frac{X_{FeO}}{X_{NiO}}$ = 302,85. 1.1,02% 2.1,60%	
3. 1,09%	
4. 1,43%	
14. Из окисленных никелевых руд состава: NiO – 3,5; Fe_2O_3 – 18 (остальное - Al ₂ O ₃ . MgO . CaO. SiO ₂) получают ферроникель - сплав железо – никель с содержанием никеля 28% (мас.) по реакции: (NiO) + [Fe] = [Ni] + (FeO). Рассчитать процент перехода никеля в шлак (химические потери никеля в виде NiO) при температуре T = 1800K, если: $\frac{X_{Fe}}{X_{Ni}}$ = 2,7; η_{FeO}^{ucx} = 0,225; $\frac{X_{FeO}}{X_{NiO}}$ = 248,33. 1. 0,46% 2. 0,53% 3. 0,85% 4. 0,69%	ПК-2
15. Определить остаточное содержание никеля % (мас.) в черновой	ПК-2
меди после окислительного рафинирования при температуре 1460К, если содержание растворенного кислорода в расплаве – 0,2% (мас.),	
а активность закиси никеля (α_{NiO}) равна 0,1.	
Если: $Ni\%$ (мол.) = 5,191; $Cu_2O\%$ (мол.) = 0,8	
1. 4,77% 2. 5,15% 3. 0,47% 4. 0,51%	

16. Определить остаточное содержание никеля % (мас.) в черновой меди после окислительного рафинирования при температуре 1500 K, если содержание растворенного кислорода в расплаве – 0,6% (мас.), а активность закиси никеля (α_{NiO}) равна 0,2. Если: $Ni\%$ (мол.) = 1,982; $Cu_2O\%$ (мол.) = 2,5 1. 2,35% 2. 23,50% 3. 17,80% 4. 1,78%	ПК-2
17. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать $0,2\%$ (мас.): $ [FeO] + [Mn] = [Fe] + MnO $ Температура процесса — 1870 К. Температурная зависимость энергии Гиббса образования оксидов выражается уравнениями, Дж/моль, $ \Delta G^{\circ}FeO = -239600 + 49,49T; $ $ \Delta G^{\circ}MnO = -406200 + 87,9T. $ 1. $0,08\%$ 2. $0,108\%$ 3. $0,8\%$ 4. $0,18\%$	ПК-2
18. Определить остаточное (равновесное) содержание кислорода в стали при раскислении ее марганцем, если остаточное содержание марганца в стали не должно превышать $0,4\%$ (мас.): $ [FeO] + [Mn] = [Fe] + MnO $ Температура процесса — 1850 К. Температурная зависимость энергии Гиббса образования оксидов выражается уравнениями, Дж/моль. $ \Delta G^{\circ}FeO = -239600 + 49,49T; \ \Delta G^{\circ}MnO = -406200 + 87,9T. $ 1. $0,031\%$ 2. $0,024\%$ 3. $0,072\%$ 4. $0,015\%$	ПК-2
4. 0,013% 19. Обжиг, цель которого перевести оксиды или сульфиды в хлориды – это: 1. Кальцинирующий 2. Хлорирующий 3. Фторирующий 4. Магнетизирующий	ПК-2

20. Что, кроме минимального количества извлекаемого металла и шлака, содержит в себе шлак рудных плавок: 1. Пустую породу 2. Драгоценные металлы 3. МПГ 4. Штейн	ПК-2
21. Процесс, цель которого, в конечном счете, извлечь металл из руд или других минералов – это: 1. Рафинировочный 2. Окислительный 3. Восстановительный 4. Металлургический	ПК-2
22. По химическому составу руды бывают:1. Вкрапленные2. Медистые3. Самородные4. Богатые	ПК-2
23. Обжиг, цель которого изменить химический состав тех рудных минералов, которые находятся в сырье – это: 1. Окислительный 2. Обжиг с агломерацией 3. Кальцинирующий 4. Восстановительный	ПК-2
24. Процесс, который помимо расплавления сопровождается многочисленными химическими превращениями. Исходные вещества реагируют между собой и с газообразной фазой с образованием суммы жидких фаз и изменений газообразной фазы 1. Обжиг 2. Кальцинация 3. Конвертирование 4. Плавка	ПК-2
 25. Процесс рудной плавки, при котором в результате получают металл в твердом или жидком состоянии: 1. Восстановительная 2. Окислительная-контрационная 3. Электролиз расплавленных солей 4. Металлотермическая 	ПК-2

Матрица ответов по дисциплине: Теория пирометаллургических процессов

	№ варианта				
№ вопроса	1	2	3	4	5
1	3	2	2	3	4
2	3	1	3	1	1
3	3	2	1	2	3
4	3	4	4	2	2
5	2	4	2	4	2
6	2	2	1	4	2
7	1	1	2	3	1
8	1	2	4	4	3
9	4	1	3	2	1
10	3	1	4	3	4
11	2	3	3	2	2
12	3	1	1	1	4
13	2	3	2	4	1
14	1	3	3	1	3
15	2	4	1	2	1
16	1	1	1	3	4
17	1	2	4	1	2
18	3	4	3	3	3
19	2	3	1	4	2
20	1	1	2	2	1
21	4	2	1	3	4
22	1	4	1	4	3
23	2	2	4	1	3
24	4	3	2	4	4
25	1	4	1	2	3