Документ подписан простой элект Мийнотерство науки и высшего образования РФ
Информация о влежне ральное государственное бюджет ное образовательное учреждение ФИО: Игнатенко Виталий иванович
Должность: Проректор по образовательной деятельности и мень ком образовательное учреждение должность: Проректор по образовательной деятельности и мень ком образования
Дата подписания Заполя рибый государственный университет им. Н. М. Федоровского» Уникальный программный ключ:

а49ае 343аf 5448 d45 d7 e 3 e 1 e 4996 59 da 8109 ba 78

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

«Специальная химия»

Факультет: <u>1 1Ф</u>		
Направление подготовки: <u>22.03.02 «Метал</u>	<u>лургия»</u>	
Направленность (профиль): <u>«Прогрессивн</u>	шье методы получения цве	тных металлов»
Уровень образования: <u>бакалавриат</u> Кафедра « <u>Металлургии, машин и оборудова</u> наименование кафедры	<u>ания</u> »	
Разработчик ФОС:		
К.г.н., доцент		Черемисин А.А.
(должность, степень, ученое звание)	(подпись)	(ФИО)

Оценочные материалы по дисциплине рассмотрены и одобрены на заседании кафедры, протокол № $\underline{2}$ от « $\underline{07}$ » $\underline{05}$ 2025 г.

Заведующий кафедрой к.т.н., доцент Крупнов Л.В.

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами образовательной программы

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения
компетенции	
ПК-3: Использует физико-	ПК-3.1: Применяет знания о термодинамических и кинетических
химическую сущность	факторах, влияющих на протекание металлургического процесса
процессов при производстве	
цветных металлов	

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки
Значение методов контроля и анализа веществ	ПК-3	Тестовые задания	Решение всех тестовых заданий по темам
Метрологическое обеспечение анализа химического состава	ПК-3	Тестовые задания	Решение всех тестовых заданий по темам
Общие положения и принципы аналитической химии	ПК-3	Тестовые задания	Решение всех тестовых заданий по темам
Теоретические основы аналитической химии	ПК-3	Тестовые задания	Решение всех тестовых заданий по темам
Качественный анализ	ПК-3	Тестовые задания	Решение всех тестовых заданий по темам
Элементы метрологии химического анализа	ПК-3	Тестовые задания	Решение всех тестовых заданий по темам
Количественный химический анализ	ПК-3	Тестовые задания	Решение всех тестовых заданий по темам
Зачет	ПК-3	Решение всех тестовых заданий по темам	Решение всех тестовых заданий по темам

1. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков

и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

	Наименование	Сроки	Шкала	Критерии
	оценочного средства	выполнения	оценивания	оценивания
Промежуточная аттестация в форме «Зачета»				
	Тестовые задания	В течении	от 0 до 5 баллов	Зачет/Незачет
		обучения по		
		дисциплине		
ИТС	ОГО:	-	баллов	-
Критерии оценки результатов обучения по дисциплине:				
Handrak W (November V VV) vin a pavy Handrak Danie				

Пороговый (минимальный) уровень для аттестации в форме зачета — 75 % от максимально возможной суммы баллов Зачет выставляется при сдаче студентом всех тестовых заданий

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций в ходе освоения образовательной программы

Для очной, очно-заочной формы обучения Задания для текущего контроля и сдачи дисциплины

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
1. Действием подкисленного раствора перманганата калия	ПК-3
можно обнаружить в растворе ионы	
a) SO_3^{2-}	
6) SO ₄ ²⁻	
B) NO ₃ -	
Γ) PO ₄ ³⁻	
2. Определить ионы калия в растворе можно действием	ПК-3
реагента, формула которого имеет вид	
a) Na[Sb(OH) ₆]	
б) Na ₃ [Co(NO ₂) ₆]	
B) $(NH_4)_2C_2O_4$	
Γ) Na ₃ [Fe(CN) ₆]	
3. Масса азотной кислоты, содержащаяся в 5 л ее раствора,	ПК-3
значение pH которого равно 3, составляет г (α = 1).	
a) 0,630	
6) 0,315	
в) 0,063	
г) 0,126	
4. Вычислите рН ацетатной буферной смеси, полученной	ПК-3
растворением 1,64г ацетата натрия в 100 мл и 0,2 н раствора	
уксусной кислоты (Ксн₃соон=1,75 ·10 ⁻⁵).	
a) -4,76	
6) 4,5	
в) -4,5	

r) 4,76	
5. Раствор какой соли при гидролизе будет окрашивать	ПК-3
фенолфталеин в малиновый цвет?	
a) CuSO ₄	
6) ZnCl ₂	
в) Na ₂ SO ₃	
r) NaBr	
6. Продуктом гидролиза какой соли будет гидроанион?	ПК-3
a) Rb ₂ S	
6) NH ₄ NO ₃	
B) Al ₂ (SO ₄) ₃	
Γ) CaCl ₂	
7. Вычислите растворимость $Ca_3(PO_4)_2$ в моль/л, если $\Pi P=3$.	ПК-3
10^{-38} .	
a) 2,78·10 ⁻⁸	
6) 0,17·10 ⁻¹⁹	
в) 2,78·10 ⁻¹⁹	
Γ) 0,17·10 ⁻⁸	
8. Масса карбоната бария, содержащаяся в 10 л насыщенного	ПК-3
раствора, равна мг ($\Pi PBaCO_3 = 4,0 \cdot 10^{-10}$)	
a) 19,7	
6) 78,8	
в) 39,4	
г) 3,94	
9. Наименьшей растворимостью (моль/л) обладает карбонат	ПК-3
двухвалентного металла, значение произведения	
растворимости которого равно	
a) $3.8 \cdot 10^{-8}$	
$6) 7.5 \cdot 10^{-14}$	
B) $4.0 \cdot 10^{-10}$	
Γ) 1,8 · 10 ⁻¹¹	
10. При каком значении константы равновесия (К)	ПК-3
окислительно-восстановительная реакция протекает в прямом	
направлении:	
a) $K < 5$	
6) K < 1	
$\mathbf{B}) \mathbf{K} = 0$	
r) K > 1	
11. На чем основан гравиметрический метод анализа?	ПК-3
а) на определении объема титранта	
б) на определении молярной концентрации титранта	
в) на определении количества осадителя в растворе	
г) на определении молярной концентрации эквивалента	
титранта	

12. Масса серной кислоты, содержащейся в 5 л раствора с	ПК-3
молярной концентрацией эквивалентов H ₂ SO ₄ равной	
0,2 моль/л, составляет г (с точностью до целого значения).	
a) 88	
6) 49	
в) 98	
Γ) 44	
13. Как выражается концентрация растворов в титриметрии?	ПК-3
а) процентная и молярная	
б) моляльная и титр	
в) моляльная и процентная	
г) молярная и моляльная	
14. Объем 0,1 М раствора NaOH, необходимый для	ПК-3
нейтрализации раствора серной кислоты, содержащего 0,147 г	
H_2SO_4 , равен мл.	
a) 15	
6) 60	
в) 30	
r) 45	
15. Объем 0,1 M раствора HNO ₃ , необходимый для	ПК-3
нейтрализации раствора гидроксида калия, содержащего	
0,084 г КОН, равен мл.	
a) 150	
б) 84	
в) 42	
r) 15	
16. Титр Т(Na ₂ O/H ₂ SO ₄) равен, если концентрация раствора	ПК-3
в виде $T(Na_2O) = 0.05649$ г/мл.	
	ПК-3
7 2	
	ПК-3
•	
•	
а) 0,05649 б) 0,08909 в) 0,11298 г) 0,17818 17. Аналитическая химическая реакция — это реакция, сопровождающаяся: а) изменением окраски раствора под действием реагента б) аналитическим эффектом, который связан с образованием продукта, обладающего специфическими свойствами в) растворением осадка г) выделением газа 18. Тип аналитической реакции [Ag(NH₃)₂]Cl + 2HNO₃ → AgCl↓ + 2NH₄NO₃ а) ионнообменная б) комплексообразования в) осаждения	ПК-3

19. Стандартный раствор применяется:	ПК-3
а) для приготовления индикатора	11K-3
б) в качестве индикатора	
_	
в) для установления точки эквивалентности	
г) для приготовления растворенного вещества	пи э
20. Какие из перечисленных операций производят при	ПК-3
титровании?	
а) выпаривание раствора	
б) добавление индикатора	
в) подкисление раствора	
г) нагревание раствора	
21. Объем раствора гидроксида бария с молярной	ПК-3
концентрацией эквивалентов 0,1 моль/л, необходимый для	
нейтрализации 25 мл раствора соляной кислоты с молярной	
концентрацией эквивалентов 0,2 моль/л, равен мл.	
a) 50	
6) 0,5	
B) 5	
г) 0,005	
22. На какие методы делится окислительно-восстановительное	ПК-3
титрование?	
а) перманганатометрия, йодометрия, осадительное	
б) перманганатометрия, тиоцианометрия, йодометрия	
в) аргентометрия, перманганатометрия, йодометрия,	
г) перманганатометрия, йодометрия, дихроматометрия	
23. В йодометрии в качестве стандартизированного раствора	ПК-3
используется:	
а) тиосульфат натрия	
б) сульфат натрия	
в) сульфат калия	
г) сульфит натрия	
24. Чему равна эквивалентная масса перманганата калия при	ПК-3
титровании в щелочной среде	11K-3
а) 52,67 г/моль	
б) 31,6 г/моль	
в) 15,8 г/моль	
г) 158 г/моль	
25. При аргентометрическом титровании в качестве	ПК-3
	11 K- 3
стандартного раствора используют:	
a) NaCl	
6) AgNO ₃	
B) KCl	
r) AgCl	

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
OUEIIO IIIOE CI EACTBO	Компстенции

1. При действии избытка водного раствора аммиака на	ПК-3
раствор, содержащий ионы Al ³⁺ , Fe ³⁺ , Zn ²⁺ , Cu ²⁺ , в	
осадок выпадают:	
a) Al(OH) ₃ и Cu(OH) ₂	
б) Fe(OH) ₃ и Zn(OH) ₂	
в) Al(OH) ₃ и Fe(OH) ₃	
г) Zn(OH) ₂ и Cu(OH) ₂	
2. Определить ионы CO_3^{2-} можно с помощью растворов:	ПК-3
a) Cu(OH) ₂	1111 0
6) BaCl ₂	
в) Fe(OH) ₃	
г) H ₂ SO ₄	
3. Масса гидроксида калия, содержащаяся в 10 л его	ПК-3
раствора, значение рН которого равно 11, составляет г	1111 0
$(\alpha = 1)$.	
a) 0,56	
6) 0,28	
в) 0,056	
r) 0,112	
4. Вычислите pH аммонийной буферной смеси, полученной	ПК-3
растворением 3,2 г нитрата аммония в 100 мл и 0,1 М	1111 0
раствора аммиака (KNH ₃ ·H ₂ O=1,74 ·10 ⁻⁵).	
a) 9,23	
6) 7,77	
в) 10,23	
r) 8,23	
5. Продуктом гидролиза какой соли будет гидроанион?	ПК-3
a) ZnCl ₂	
6) Zn(NO ₃) ₂	
B) Na ₃ PO ₄	
r) CuSO ₄	
6. Как можно уменьшить гидролиз соли Na ₂ CO ₃ ?	ПК-3
а) добавить НСІ	
6) NaCl	
в) не знаю	
г) добавить NaOH	
7. Вычислите растворимость Ag ₂ CrO ₄ в моль/л, если ПР=1,1	ПК-3
·10 ⁻¹² .	•
a) $0.65 \cdot 10^{-12}$	
6) 0,65·10-6	
B) $0.65 \cdot 10^{-8}$	
Γ) 0,65·10 ⁻⁴	
8. Масса сульфата бария, содержащаяся в 2 л насыщенного	ПК-3
раствора, равна мг ($\Pi P = 1, 3 \cdot 10^{-12}$).	-
a) 0,53	

6) 0,265	
в) 0,795	
г) 0,106	
9. Условие выпадение осадка:	ПК-3
a) $\Pi PAB = [A^+] \cdot [B^-]$	
6) ΠPAB > [A ⁺] · [B ⁻]	
B) $\Pi PAB < [A^+] \cdot [B^-]$	
$\Gamma) \Pi P_{A_2B} = [A^+]^2 \cdot [B^{2-}]$	
10. При каком значении константы равновесия (К)	ПК-3
окислительно-восстановительная реакция протекает в	11K-3
обратном направлении?	
a) K < 1	
$\begin{array}{c} a) & K < 1 \\ 6) & K = 5 \end{array}$	
$\begin{array}{c} \mathbf{b} \mathbf{K} = 0 \\ \mathbf{b} \mathbf{K} = 0 \end{array}$	
Γ) $K > 1$	
	пи э
11. Для определения воды разработаны методы:	ПК-3
а) избыток кислоты	
б) прямые и косвенные	
в) избыток щелочи	
г) окислительно-восстановительные	
12 Пам набарнамим мабамим дообарнамим до дострова	пи э
12. При добавлении избытка разбавленного раствора	ПК-3
карбоната натрия к 50 мл 0,1М раствора образуется осадок	
массойг.	
a) 0,75	
6) 0,5	
B) 0,25	
r) 1,0	пис э
13. Аликвота – это когда:	ПК-3
а) титруют рабочим раствором	
б) титруют стандартным раствором	
в) титруют не весь раствор, а только определенную часть	
г) титруют щелочью	
14. Объем 0,1 М раствора NaOH, необходимый для	ПК-3
осаждения железа в виде гидроксида из 20 мл 0,05 М	
раствора нитрата железа (III), равен мл.	
a) 30	
б) 15	
в) 60	
Γ) 45	
15. Объем хлороводорода (н.у.), который содержится в 847,5	ПК-3
мл 36,5 %-го раствора соляной кислоты ($\rho = 1,18 \text{ г/см}^3$),	
составляет литров (с точностью до целого значения).	
a) 448	
6) 22,4	
в) 224	

г) 44,8	
16. Титр Т(Са(ОН) ₂ /НСООН) равен, концентрация раствора в	ПК-3
виде $T(Ca(OH)_2) = 0.09264$ г/мл:	
a) 0,09264	
6) 0,18528	
в) 0,07451	
r) 0,14902	
17. В основе классификации катионов по аналитическим	ПК-3
группам лежит:	
а) возможность последовательного перевода их в осадок	
путем воздействия системы реагентов	
б) расположение их в одной группе периодической системы	
в) сходство их физических свойств	
г) образование солей, нерастворимых в кислотах	
18. Тип аналитической реакции:	ПК-3
$NaCl + K[Sb(OH)_6] \rightarrow Na[Sb(OH)_6] + KCl$	
а) ионнообменная	
б) осаждения	
в) окислительно-восстановительная	
г) комплексообразования	
19. Какой раствор называется титрованным раствором?	ПК-3
а) стандартный раствор, с известным титром	
б) раствор соли	
в) раствор кислоты	
г) раствор щелочи	
20. Индикаторы:	ПК-3
а) вещества для установления точки эквивалентности	
б) вещества для осаждения	
в) стандартные вещества	
г) титранты	
21. Объем раствора гидроксида бария с молярной	ПК-3
концентрацией эквивалентов 0,1 моль/л, необходимый для	
нейтрализации 25 мл раствора соляной кислоты с молярной	
концентрацией эквивалентов 0,2 моль/л, равен мл.	
a) 75	
6) 50	
в) 25	
r) 100	
22. Какие типы окислительно-восстановительного	ПК-3
титрования существуют?	
а) перманганатометрия, йодометрия, хроматометрия	
б) йодометрия, осадительное титрование, хроматометрия	
в) перманганатометрия, брометрия, кислотно-основное	
титрование	
г) йодометрия, кислотно-основное титрование,	
хроматометрия	

23. В йодометрии в качестве индикатора используют	ПК-3
раствор:	
а) йод	
б) тиосульфат натрия	
в) сульфат натрия	
г) крахмал	
24. Чему равна эквивалентная масса перманганата калия при	ПК-3
титровании в нейтральной среде?	
а) 52,67 г/моль	
б) 31,6 г/моль	
в) 15,8 г/моль	
г) 158 г/моль	
25. Способы установления точки эквивалентности в	ПК-3
аргентометрическом методе:	
а) метод Мора	
б) метод Фольгарда	
в) метод Мора, метод Фольгарда	
г) трилон Б	

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
1. При действии водного раствора щелочи на раствор,	ПК-3
содержащий ионы A1 ³⁺ , Fe ³⁺ , Zn ²⁺ , Cu ²⁺ , в осадок	
выпадают:	
a) NaOH и Al(OH)3	
б) $Al(OH)_3$ и $Cu(OH)_2$	
$B)Zn(OH)_2HFe(OH)_3$	
г) Fe(OH) ₃ и Cu(OH) ₂	
2. Определить ионы SO_4^{2-} можно с помощью раствора	ПК-3
a) $Cu(OH)_2$	
б) NaOH	
в) Fe(OH) ₃	
г) BaCl ₂	
3. Масса гидроксида натрия, содержащаяся в 1 л его	ПК-3
раствора, значение рН которого равно 12, составляет г	
$(\alpha = 1)$.	
a) 0,4	
6) 8	
в) 0,8	
г) 0,088	
4. Вычислите рН ацетатной буферной смеси, полученной	ПК-3
смещением 100 мл 0,4н раствора ацетата натрия и 100 мл 0,2	
н раствора уксусной кислоты:	
a) 4,46	
6) 5,06	

в) -4,46	
г) -5,06	
5. Раствор какой соли при гидролизе будет иметь рН = 7?	ПК-3
a) SnCl ₂	
6) Na ₂ C ₂ O ₄	
B) NaHCOO	
r) NaNO ₃	
6. Продуктом гидролиза какой соли будет гидроанион?	ПК-3
a) CaSO ₄	
6) Na ₂ SO ₄	
B) NaBr	
r) Na ₃ PO ₄	
7. Вычислите растворимость $Pb_3(PO_4)_2$ в моль/л и г/л, если	ПК-3
$\Pi P = 7,9 \cdot 10^{-43}$.	
a) 10,97 · 10 ⁻⁹	
б) 1,61 · 10 ⁻⁴⁵	
B) 1,61 · 10 ⁻⁹	
r) 1,61 · 10 ⁻⁸	
8. Масса ионов кальция, содержащаяся в 5 л насыщенного	ПК-3
раствора карбоната кальция, равна мг	
$(\Pi P_{CaCO_3} = 4.8 \cdot 10^{-9}).$	
a) 27,6	
6) 13,8	
в) 2,8	
r) 3,4	
9. Условие гетерогенного химического равновесия:	ПК-3
a) $\Pi PAB = [A^+] \cdot [B^-]$	
$6) \Pi PAB > [A^+] \cdot [B^-]$	
B) $\Pi PAB < [A^+] \cdot [B^-]$	
Γ) $\Pi PAB = [A^{+}]^{2} \cdot [B^{2}]$	
10. При каком значении константы равновесия (К)	ПК-3
окислительно-восстановительная реакция протекает в	
прямом направлении:	
a) K < 1	
б) K >1	
$\mathbf{B}) \mathbf{K} = 0$	
Γ) K = 5	
11. Эксикатор служит для:	ПК-3
а) переноски химических веществ	
б) точного измерения объема раствора	
в) разбавления исследуемого раствора	
г) охлаждения бюкса после высушивания	
12. Масса сульфата магния, которую необходимо растворить	ПК-3
в 500 см ³ воды для получения раствора с моляльной	

концентрацией 0,5 моль/кг, составляет г (с точностью до	
целого значения).	
a) 30	
(a) 15	
в) 60	
r) 6	
13. Фиксанал –это:	ПК-3
а) сухое вещество или раствор в количестве, необходимом	
для приготовления 1 л раствора определенной концентрации	
б) объем в точке эквивалентности	
в) масса вещества	
г) объем, пошедший на титрование	
14. Объем аммиака (н.у.), который необходим для	ПК-3
приготовления 25 литров 0,05 М раствора, составляет	
литра(-ов) (с точностью до целого значения).	
a) 14	
6) 56	
в) 28	
r) 7	
15. Объем 0,1М раствора карбоната натрия, необходимый для	ПК-3
осаждения ионов кальция из раствора, содержащего 0,324 г	11K-3
его гидрокарбоната, равен мл.	
a) 15	
(a) 20 (b) 10	
B) 10	
r) 30	пис э
16. Титр Т(КОН/HNO ₃) равен, если концентрация	ПК-3
раствора в виде $T(KOH) = 0,05643$ г/мл.	
a) 0,10032	
6) 0,15048	
в) 0,20064	
r) 0,05016	
17. В качественном анализе преимущественно проводят	ПК-3
реакции:	
а) с растворами электролитов	
б) с неэлектролитами	
в) аппаратным методом	
г) газами	
18. Тип аналитической реакции:	ПК-3
$CuSO_4 + 4NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O$	
а) ионнообменная	
б) комплексообразования	
в) окислительно-восстановительная	
г) осаждения	

19. Какой из ниже приведенных методов основан на	ПК-3
измерения объема рабочего раствора израсходованного при	IIIC-3
определении количества вещества?	
а) гравиметрический	
б) титриметрический анализ	
в) определение ионов Н ⁺	
г) определение ионов ОН-	пис о
20. При определении концентрации хлороводородной	ПК-3
кислоты в анализируемом растворе с помощью раствора	
гидроксида натрия, в качестве индикатора можно	
использовать:	
а) эриохром черный	
б) хромоген черный	
в) фенолфталеин	
г) метилоранж	
21. На титрование 15,0 мл раствора гидроксида натрия	ПК-3
затрачено 13,5 мл раствора серной кислоты с молярной	
концентрацией эквивалентов 0,1 моль/л. Молярная	
концентрация эквивалентов раствора NaOH составляет	
моль/л.	
$\overline{a) 0,09}$	
6) 0,9	
B) 9	
r) 90	
22. На какие методы делится окислительно-	ПК-3
восстановительное титрование?	
а) перманганатометрия, йодометрия, осадительное	
б) перманганатометрия, тиоцианометрия, йодометрия	
в) перманганатометрия, йодометрия, дихроматометрия	
г) аргентометрия, перманганатометрия, йодометрия	
23. В дихроматометрии в качестве индикатора используют:	ПК-3
а) йод	11K-3
б) дифениламин	
в) крахмал	
г) щелочь	
	пи э
24. Чему равна эквивалентная масса йода в реакции	ПК-3
взаимодействия с тиосульфатом натрия?	
а) 12,7 г/моль	
б) 25,4 г/моль	
в) 254 г/моль	
г) 127 г/моль	

25. Индикаторы, применяемые в осадительном титровании:	ПК-3
а) фенолфталеин, метилоранж	
б) эриохром черный	
в) металлохромные, адсорбционные	
г) лакмус, фенолфталеин	

Вариант 4	70
ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
1. При действии 2 M раствора соляной кислоты на смесь	ПК-3
ионов Ca^{2+} , Cu^{2+} , Ag^+ и NH_4^+ в виде осадка выделяется:	
a) CaCl ₂	
δ) CuCl ₂	
B) AgCl	
r) NH ₄ Cl	
2. Определить ионы NH ₄ ⁺ можно с помощью растворов	ПК-3
a) $Cu(OH)_2$	
б) NaOH	
в) Fe(OH) ₃	
Γ) H ₂ SO ₄	
3. Значение рН раствора, полученного путем разбавления	ПК-3
$0,1 \text{ M}$ раствора гидроксида калия в 100 раз (α =1), равно:	
a) 3	
6) 12	
в) 11	
r) 2	
4. Вычислите рН формиатной буферной смеси,	ПК-3
полученной растворением 1г формиата натрия в 250мл и	
$0,2$ н раствора муравьиной кислоты (КНСООН= $1,8\cdot10^{-4}$).	
a) 1,44	
6) -1,44	
в) 2,88	
г) -2,88	
5. В растворе какой соли pH > 7?	ПК-3
a) K ₂ SO ₄	
6) K ₂ S	
B) KNO ₃	
Γ) NaNO ₃	
6. Продуктом гидролиза какойсоли будут	ПК-3
гидроксокатионы?	
a) K_2SO_4	
6) Na ₂ S	
B) Na ₂ CO ₃	
r) CuCl ₂	
7. Определите растворимость Ag_2CO_3 в воде (моль/л), если	ПК-3
$\Pi P A g_2 C O_3 = 6.15 \cdot 10^{-12}$	
a) 1,15·10 ⁻¹²	
_ -, -, 	L

б) 1,15·10 ⁻⁶	
в) 6,15·10 ⁻⁶	
r) 0,15·10 ⁻⁶	
8. Масса фторида кальция, содержащаяся в 5 л	ПК-3
насыщенного раствора, равна мг (CaF2 = $1,15\cdot10^{-11}$)	
a) 133,4	
6) 167,8	
в) 66,7	
r) 83,9	
9. Условие гетерогенного химического равновесия:	ПК-3
a) ПРав < [A ⁺] · [B ⁻]	IIK-3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
B) $\Pi PAB = [A^+] \cdot [B^-]$	
$\Gamma \cap \Pi P = [A^+]^2 \cdot [B^2]$	
	ПК-3
10. При каком значении константы равновесия (К)	11K-3
окислительно-восстановительная реакция протекает в	
обратном направлении?	
a) K = 0	
6) K > 1	
B) K < 1	
r) K = 5	
11. Пипетки служат для:	ПК-3
а) точного отмеривания определенного объема раствора	
б) точного измерения объема раствора	
в) разбавления исследуемого раствора	
г) охлаждения бюкса после высушивания	
12. При сливании 20 мл 0,1M раствора Ba(NO ₃) ₂ и 15 мл	ПК-3
$0,2M$ раствора K_2CO_3 образуется осадок массой г.	
a) 0,197	
6) 0,591	
в) 0,394	
г) 0,788	
13. Титрование – это:	ПК-3
а) непрерывно контролируемый процесс постепенного,	
небольшими порциями добавления одного вещества к	
другому	
б) измерение определенного объема раствора	
в) измерение определенной массы вещества	
г) измерение влажности вещества	
14.Объем хлороводорода (н.у.), который необходим для	ПК-3
приготовления 20 литров 0,5 М раствора соляной кислоты,	
составляет литров (с точностью до целого	
значения).	
a) 448	
6) 22,4	
B) 44,8	

г) 224	
15. 100 г 40%-ного раствора гидроксида натрия разбавили	ПК-3
водой до объема 500 мл. Молярная концентрация	
эквивалентов NaOH в полученном растворе составляет	
моль/л (с точностью до целого значения).	
$\overline{a) 4}$	
6) 6	
в) 2	
r) 8	
16. Титр T(HCl/ZnS), концентрация раствора в виде T(HCl) =	ПК-3
0,02445 г//мл:	
a) 0,0092	
6) 0,02445	
в) 0,0184	
г) 0,0489	
17. К аналитическим реакциям, проводимым «мокрым»	ПК-3
путем нельзя отнести реакцию:	
а) осаждения	
б) окрашивания пламени	
в) изменение окраски индикатора	
г) комплексообразование	
18. Тип аналитической реакции:	ПК-3
$2\text{CoCl}_2 + 12\text{KCN} + \text{Cl}_2 \rightarrow 2\text{K}_3[\text{Co(CN)}_6] + 6\text{KCl}$	
а) ионнообменная	
б) комплексообразования	
в) окислительно-восстановительная	
г) осаждения	
19. На какие методы делится кислотно-основное	ПК-3
титрование	
а) перманганатометрия	
б) йодометрия	
в) нейтрализации	
г) брометрия	
20. При определении карбонатной жесткости воды	ПК-3
методом кислотно-основного титрования в качестве	
индикатора используется:	
а) метиловый оранжевый	
б) фенолфталеин	
в) мурексид	
г) эриохром черный	

21. Объем раствора гидроксида бария с молярной	ПК-3
концентрацией эквивалентов 0,1 моль/л, необходимый для	
нейтрализации 25 мл раствора соляной кислоты с	
молярной концентрацией эквивалентов 0,2 моль/л, равен	
МЛ.	
a) 0,005	
6) 0,5	
в) 5	
г) 50	
22. На какие методы делится окислительно-	ПК-3
восстановительное титрование?	
а) перманганатометрия, йодометрия, дихроматометрия	
б) перманганатометрия, тиоцианометрия, йодометрия	
в) аргентометрия, перманганатометрия, йодометрия,	
г) перманганатометрия, йодометрия, осадительное	
23. Установка конечной точки титрования в	ПК-3
перманганатометрическом методе:	
а) изменение фиолетовой окраски фенолфталеина	
б) появление фиолетовой окраски фенолфталеина	
в) изменение фиолетовой окраски перманганата калия	
г) изменение объема перманганата калия	
24. Чему равна масса тиосульфата натрия (Na ₂ S ₂ O ₃ ·5H ₂ O)	ПК-3
в реакции взаимодействия его с йодом?	
a) 24,8	
6) 79	
в) 248	
г) 158	
25. Классификация методов осадительного титрования:	ПК-3
а) перманганатометрия, йодометрия	
б) нейтрализации, аргентометрия	
в) брометрия, меркурометрия	
г) аргентометрия, меркурометрия	

ОЦЕНОЧНОЕ СРЕДСТВО	Компетенция
1. При действии водного раствора щелочи на раствор,	ПК-3
содержащий ионы A1 ³⁺ , Fe ³⁺ , Zn ²⁺ , Cu ²⁺ , в осадок	
выпадают:	
a) NaOH и Al(OH) ₃	
б) Fe(OH) ₃ и Cu(OH) ₂	
$B)$ Zn(OH) $_2$ и Fe(OH) $_3$	
г) Al(OH) ₃ и Cu(OH) ₂	
2. Отделить ионы Al^{3+} от ионов Fe^{3+} можно действием	ПК-3
раствора:	
a) NaOH	

 б) Na₂CO₃ в) NH₄OH г) H₂SO₄ 3. Масса гидроксида натрия, содержащаяся в 1 л его раствора, значение рН которого равно 12, составляет г (α = 1). а) 0,4 б) 0,08
г) H_2SO_4 3. Масса гидроксида натрия, содержащаяся в 1 л его раствора, значение рН которого равно 12, составляет г ($\alpha=1$). a) $0,4$
3. Масса гидроксида натрия, содержащаяся в 1 л его раствора, значение pH которого равно 12, составляет г (α = 1). а) 0,4
раствора, значение pH которого равно 12, составляет г ($\alpha=1$). a) $0,4$
$(\alpha = 1)$. a) 0,4
a) 0,4
в) 0,8
г) 8
раствора NH_4OH и содержащего 0.35 г хлорида аммония в 1 л раствора ($KNH_4OH=1.7 \cdot 10^{-5}$).
a) 0,523
6) 0,477
B) 5,23
r) 4,77
5. Раствор какой соли при гидролизе будет окрашивать ПК-3
лакмус в красный цвет?
a) CrCl ₃
6) Na ₃ PO ₄
B) Na ₂ SO ₃
Γ) K_2S
6. Продуктом гидролиза какой соли будет гидроанион? ПК-3
a) K_2SO_4
6) K ₂ CO ₃
B) KNO ₃
r) ZnCl ₂
7. Вычислите растворимость Ag_2CrO_4 в моль/л, если ПК-3
$\Pi P = 1, 1 \cdot 10^{-12}$.
a) 0,65·10 ⁻⁴
6) 0,65·10 ⁻¹²
в) 0,275·10 ⁻¹²
г) 0,2765·10 ⁻⁴
8. Масса хлорида серебра, содержащаяся в 10 л
насыщенного раствора, равна мг (ПР $_{AgCl} = 1,78 \cdot 10^{-10}$).
a) 1935
б) 0,1935
в) 19,35
г) 1,935
9. Условие выпадение осадка ПК-3
a) $\Pi PAB > [A^+] \cdot [B^-]$
$6) \Pi P_{AB} = [A^{+}] \cdot [B^{-}]$
B) $\Pi PAB < [A^+] \cdot [B^-]$
$\Gamma) \Pi P_{A_2B} = [A^+]^2 \cdot [B^{2-}]$

10. При каком значении константы равновесия (К)	ПК-3
окислительно-восстановительная реакция протекает в	
обратном направлении?	
a) $K = 0$	
б) K > 1	
$_{\rm B})~{\rm K}=5$	
r) K < 1	
11. В чем сущность гравиметрического анализа?	ПК-3
а) в точном измерении массы определяемого вещества и его	
компонента, выделяемых в химически чистом состоянии	
или в виде соответствующих соединений	
б) в точном измерении объемов веществ	
в) в точном измерении массы веществ и объемов	
содержащих их растворов	
г) в точном измерении массы и объема веществ	
12. Масса серной кислоты, содержащейся в 1 мл раствора с	ПК-3
молярной концентрацией эквивалентов H ₂ SO ₄ равной	
2 моль/л, составляет мг (с точностью до целого	
значения).	
a) 98	
6) 49	
в) 9,8	
r) 4,9	
13. Титрант – это:	ПК-3
а) реагент, добавляемый для индикации раствора	
б) реагент, ингибирующий реакцию	
в) реагент, добавляемый для растворения	
г) реагент, добавляемый к анализируемому веществу	
(раствору)	
14. Массовая доля гидроксида натрия в растворе,	ПК-3
полученном при растворении 4,0 г оксида в 100 см ³ воды,	
равна % (с точностью до целого значения).	
a) 50	
6) 5	
в) 0,5	
r) 0,005	
15. При определении содержания бромида калия в сточных	ПК-3
водах на титрование аликвоты объемом 100 см ³ было	
израсходовано 12,0 мл раствора нитрата серебра с молярной	
концентрацией 0,0125 моль/л. Содержание бромида калия в	
водах составляет мг/л.	
a) 357,0	
6) 89,8	
в) 178,5	
r) 267,8	
l · · ·	•

16. Значение молярной концентрации $C_M(NaOH)$ равно, если концентрация раствора в виде $T(NaOH/CO_2) =$	ПК-3
0,007241:	
a) 0,36	
6) 0,18	
в) 0,09	
r) 1,8	
17. Аналитическим признаком реакции называют	ПК-3
а) такое изменение свойств среды при действии реагента,	
которое позволяет однозначно идентифицировать	
определяемый ион	
б) любые изменение свойств среды, вызванные	
воздействием реагента	
в) выделение определяемого иона в виде характерно	
окрашенного осадка	
г) образование характерно окрашенного комплексного	
соединения	
18. Тип аналитической реакции:	ПК-3
$[Ag(NH_3)_2]Cl + 2HNO_3 \rightarrow AgCl\downarrow + 2NH_4NO_3$	
а) ионнообменная	
б) окислительно-восстановительная	
в) комплексообразования	
г) осаждения	
19. Какой из ниже приведенных методов основан на	ПК-3
измерения объема рабочего раствора израсходованного при	
определении количества вещества?	
а) титриметрический анализ	
б) гравиметрический	
в) определение ионов H ⁺	
г) определение ионов ОН ⁻	
20. Фенолфталеин в щелочной среде изменяет свой цвет на:	ПК-3
а) желтый	
б) синий	
в) малиновый	
г) бесцветный	
21. Для нейтрализации 25 мл раствора гидроксида бария	ПК-3
было затрачено 15 мл соляной кислоты с молярной	
концентрацией эквивалентов 0,15 моль/л. Молярная	
концентрация эквивалентов раствора гидроксида бария	
равна:	
a) 0,10	
6) 0,09	
в) 0,25	
r) 0,12	
	<u>l</u>

22. На какие методы делится окислительно-	ПК-3
восстановительное титрование?	
а) перманганатометрия, йодометрия, осадительное	
б) перманганатометрия, тиоцианометрия, йодометрия	
в) аргентометрия, перманганатометрия, йодометрия,	
г) перманганатометрия, йодометрия, дихроматометрия	
23. В дихроматометри точку эквивалентности	ПК-3
устанавливают по:	
а) фенолфталеину	
б) метилоранжу	
в) редокс-индикатору	
г) крахмалу	
24. Чему равна эквивалентная масса перманганата калия,	ПК-3
если титрование ведут в кислой среде?	
а) 158 г/моль	
б) 31,6 г/моль	
в) 39,5 г/моль	
г) 15,8 г/моль	
25. В осадительном титровании в качестве стандартного	ПК-3
раствора применяют:	
а) тиоционат аммония	
б) хлорид аммония	
в) бромид аммония	
г) сульфид амммония	

Вариант/вопрос	1	2	3	4	5
1	A	В	A	В	Б
2	Б	Б	Γ	Б	A
3	Б	A	Γ	В	Б
4	Γ	В	Б	A	Γ
5	В	В	Γ	Б	A
6	A	A	Γ	Γ	Б
7	A	Γ	В	Б	A
8	B	A	Б	Γ	В
9	Б	В	A	В	A
10	Γ	A	Б	В	Γ
11	В	Б	Γ	A	A
12	Б	Б	A	В	A
13	A	В	A	A	Γ
14	В	A	В	Γ	Б
15	Γ	В	Б	В	В

16	Б	В	Γ	A	Б
17	A	A	A	Б	A
18	В	Γ	Б	Б	Γ
19	В	A	Б	В	A
20	Б	A	В	Γ	В
21	A	Б	A	Γ	Б
22	Γ	A	В	A	Γ
23	A	Γ	Б	В	В
24	Γ	A	Γ	В	Б
25	Б	В	В	Γ	A